Expanding Constrained Kinodynamic Path Planning Solutions through Recurrent Neural Networks

Thumbnail Image
Publication or External Link
Shaffer, Joshua Allen
Xu, Huan
Path planning for autonomous systems with the inclusion of environment and kinematic/dynamic constraints encompasses a broad range of methodologies, often providing trade-offs between computation speed and variety/types of constraints satisfied. Therefore, an approach that can incorporate full kinematics/dynamics and environment constraints alongside greater computation speeds is of great interest. This thesis explores a methodology for using a slower-speed, robust kinematic/dynamic path planner for generating state path solutions, from which a recurrent neural network is trained upon. This path planning recurrent neural network is then used to generate state paths that a path-tracking controller can follow, trending the desired optimal solution. Improvements are made to the use of a kinodynamic rapidly-exploring random tree and a whole-path reinforcement training scheme for use in the methodology. Applications to 3 scenarios, including obstacle avoidance with 2D dynamics, 10-agent synchronized rendezvous with 2D dynamics, and a fully actuated double pendulum, illustrate the desired performance of the methodology while also pointing out the need for stronger training and amounts of training data. Last, a bounded set propagation algorithm is improved to provide the initial steps for formally verifying state paths produced by the path planning recurrent neural network.