HYDROLOGICAL, BIOLOGICAL, AND GEOCHEMICAL RELATIONSHIPS AMONG CARBON, NITROGEN, AND BASE CATIONS IN RESTORED AND UNRESTORED URBAN STREAMS
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
Urban infrastructure changes hydrologic flowpaths of water into streams and alters ecosystem function. Geomorphic stream restoration is commonly implemented to stabilize channels, while ecosystem function, and nutrient retention are of secondary concern. This research investigated whether restoration alone significantly influences N uptake in streams and if significant hydrological, biological, and geochemical relationships exist between coupled biogeochemical cycles that should be considered when evaluating restorations. Carbon, nitrogen, base cations, and stream metabolism dynamics were investigated in six urban streams in Baltimore,MD. Nitrate tracer injections were used to quantify nitrogen uptake dynamics. Results did not show significant differences in nitrogen uptake based on restoration. Organic carbon, inorganic carbon, and nitrogen each have distinct but interrelated hydrological, biological, and geochemical relationships across all sites. These dynamic relationships may also significantly affect nitrogen uptake, but more spatiotemporal data are needed to quantify and understand variability among restored and unrestored sites.