Locally symmetric spaces and the cohomology of the Weil representation

dc.contributor.advisorMillson, Johnen_US
dc.contributor.authorShi, Youshengen_US
dc.contributor.departmentMathematicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2019-09-27T05:37:38Z
dc.date.available2019-09-27T05:37:38Z
dc.date.issued2019en_US
dc.description.abstractWe study generalized special cycles on Hermitian locally symmetric spaces $\Gamma \backslash D$ associated to the groups $G=\mathrm{U}(p,q)$, $\mathrm{Sp}(2n,\R) $ and $\mathrm{O}^*(2n) $. These cycles are covered by symmetric spaces associated to subgroups of $G$ which are of the same type. Using the oscillator representation and the thesis of Greg Anderson (\cite{Anderson}), we show that Poincar\'e duals of these generalized special cycles can be viewed as Fourier coefficients of a theta series. This gives new cases of theta lifts from the cohomology of Hermitian locally symmetric manifolds associated to $G $ to vector-valued automorphic functions associated to the groups $G'=\mathrm{U}(m,m)$, $\mathrm{O}(m,m)$ or $\mathrm{Sp}(m,m)$ which are members of a dual pair with $G$ in the sense of Howe. The above three groups are all the groups that show up in real reductive dual pairs of type I whose symmetric spaces are of Hermitian type with the exception of $\mathrm{O}(p,2)$.en_US
dc.identifierhttps://doi.org/10.13016/vk0e-xd1q
dc.identifier.urihttp://hdl.handle.net/1903/25018
dc.language.isoenen_US
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pquncontrolledcohomologyen_US
dc.subject.pquncontrolledgeneralized special cyclesen_US
dc.subject.pquncontrolledHermitian locally symmetric spacesen_US
dc.subject.pquncontrolledPoincare dualen_US
dc.subject.pquncontrolledtheta correspondenceen_US
dc.subject.pquncontrolledWeil representationen_US
dc.titleLocally symmetric spaces and the cohomology of the Weil representationen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Shi_umd_0117E_20191.pdf
Size:
707.03 KB
Format:
Adobe Portable Document Format