LOCAL AND GLOBAL GENE REGULATION ANALYSIS OF THE AUTOINDUCER-2 MEDIATED QUORUM SENSING MECHANISM IN ESCHERICHIA COLI

dc.contributor.advisorBentley, William Een_US
dc.contributor.authorByrd, Christopher Matthewen_US
dc.contributor.departmentBioengineeringen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2011-07-06T05:58:04Z
dc.date.available2011-07-06T05:58:04Z
dc.date.issued2011en_US
dc.description.abstractThe term `quorum sensing' (QS) is used to define a population density based communication mechanism which uses chemical signal molecules called autoinducers to trigger unique and varied changes in gene expression. Although several communication methods have been identified in bacteria that are unique to a particular species, one type of signal molecule, autoinducer-2 (AI-2) is linked to interspecies communication, indicating its potential as a universal signal for cueing a QS response among multiple bacterial types. In E. coli, AI-2 acts as an effector by binding to the QS repressor LsrR. As a result, LsrR unbinds and relieves repression of the lsr regulon, stimulating a subsequent QS gene expression cascade. In this dissertation, LsrR structure and in vitro binding activity are examined. Genomic binding and DNA microarray analyses are conducted and three novel sites putatively regulated by LsrR, yegE-udk, mppA and yihF, are revealed. Two cAMP receptor protein (CRP) binding locations in intergenic region of the lsr regulon are also confirmed. The role of each CRP site in divergent expression is qualified, indicating the lsr intergenic region to be a class III CRP-dependent promoter. Also, four specific DNA binding sites for LsrR in the lsr intergenic region are proposed, and reliance upon simultaneous binding to these various sites and the resulting effects on LsrR repression is presented. Finally, a complex model for regulation of the lsr regulon is depicted incorporating LsrR, CRP, DNA looping, and a predicted secondary layer of repression by an integration host factor (IHF)-like protein. Further understanding of this QS genetic mechanism may potentially be used for inhibiting bacterial proliferation and infection, modifying the natural genetic system to elicit alternate desired responses, or extracted and applied to a highly customizable and sensitive in vitro biosensor.en_US
dc.identifier.urihttp://hdl.handle.net/1903/11554
dc.subject.pqcontrolledBiomedical Engineeringen_US
dc.subject.pqcontrolledMolecular Biologyen_US
dc.subject.pquncontrolledAI-2en_US
dc.subject.pquncontrolledChIP-Chipen_US
dc.subject.pquncontrolledLsrRen_US
dc.subject.pquncontrolledQuorum sensingen_US
dc.titleLOCAL AND GLOBAL GENE REGULATION ANALYSIS OF THE AUTOINDUCER-2 MEDIATED QUORUM SENSING MECHANISM IN ESCHERICHIA COLIen_US
dc.typeDissertationen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Byrd_umd_0117E_12164.pdf
Size:
5.34 MB
Format:
Adobe Portable Document Format