dc.contributor.advisorChellappa, Ramaen_US
dc.contributor.authorDu, Mingen_US
dc.contributor.departmentElectrical Engineeringen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.description.abstractFace recognition has been an active research field for decades. In recent years, with videos playing an increasingly important role in our everyday life, video-based face recognition has begun to attract considerable research interest. This leads to a wide range of potential application areas, including TV/movies search and parsing, video surveillance, access control etc. Preliminary research results in this field have suggested that by exploiting the abundant spatial-temporal information contained in videos, we can greatly improve the accuracy and robustness of a visual recognition system. On the other hand, as this research area is still in its infancy, developing an end-to-end face processing pipeline that can robustly detect, track and recognize faces remains a challenging task. The goal of this dissertation is to study some of the related problems under different settings. We address the video-based face association problem, in which one attempts to extract face tracks of multiple subjects while maintaining label consistency. Traditional tracking algorithms have difficulty in handling this task, especially when challenging nuisance factors like motion blur, low resolution or significant camera motions are present. We demonstrate that contextual features, in addition to face appearance itself, play an important role in this case. We propose principled methods to combine multiple features using Conditional Random Fields and Max-Margin Markov networks to infer labels for the detected faces. Different from many existing approaches, our algorithms work in online mode and hence have a wider range of applications. We address issues such as parameter learning, inference and handling false positves/negatives that arise in the proposed approach. Finally, we evaluate our approach on several public databases. We next propose a novel video-based face recognition framework. We address the problem from two different aspects: To handle pose variations, we learn a Structural-SVM based detector which can simultaneously localize the face fiducial points and estimate the face pose. By adopting a different optimization criterion from existing algorithms, we are able to improve localization accuracy. To model other face variations, we use intra-personal/extra-personal dictionaries. The intra-personal/extra-personal modeling of human faces has been shown to work successfully in the Bayesian face recognition framework. It has additional advantages in scalability and generalization, which are of critical importance to real-world applications. Combining intra-personal/extra-personal models with dictionary learning enables us to achieve state-of-arts performance on unconstrained video data, even when the training data come from a different database. Finally, we present an approach for video-based face recognition using camera networks. The focus is on handling pose variations by applying the strength of the multi-view camera network. However, rather than taking the typical approach of modeling these variations, which eventually requires explicit knowledge about pose parameters, we rely on a pose-robust feature that eliminates the needs for pose estimation. The pose-robust feature is developed using the Spherical Harmonic (SH) representation theory. It is extracted using the surface texture map of a spherical model which approximates the subject's head. Feature vectors extracted from a video are modeled as an ensemble of instances of a probability distribution in the Reduced Kernel Hilbert Space (RKHS). The ensemble similarity measure in RKHS improves both robustness and accuracy of the recognition system. The proposed approach outperforms traditional algorithms on a multi-view video database collected using a camera network.en_US
dc.subject.pqcontrolledElectrical engineeringen_US
dc.subject.pqcontrolledComputer scienceen_US
dc.subject.pquncontrolledcamera networksen_US
dc.subject.pquncontrolledface associationen_US
dc.subject.pquncontrolledface recognitionen_US
dc.subject.pquncontrolledvideo analysisen_US


Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
9.47 MB
Adobe Portable Document Format