Moduli Spaces of Sheaves on Hirzebruch Orbifolds

dc.contributor.advisorGholampour, Aminen_US
dc.contributor.authorWang, Weikunen_US
dc.contributor.departmentMathematicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2019-09-27T05:37:54Z
dc.date.available2019-09-27T05:37:54Z
dc.date.issued2019en_US
dc.description.abstractWe provide a stacky fan description of the total space of certain split vector bundles, as well as their projectivization, over toric Deligne-Mumford stacks. We then specialize to the case of Hirzebruch orbifold $\mathcal{H}_{r}^{ab}$ obtained by projectivizing $\mathcal{O} \oplus \mathcal{O}(r)$ over the weighted projective line $\mathbb{P}(a,b)$. Next, we give a combinatorial description of toric sheaves on $\mathcal{H}_{r}^{ab}$ and investigate their basic properties. With fixed choice of polarization and a generating sheaf, we describe the fixed point locus of the moduli scheme of $\mu$-stable torsion free sheaves of rank $1$ and $2$ on $\mathcal{H}_{r}^{ab}$. Finally, we show that if $\mathcal{X}$ is the total space of the canonical bundle over a Hirzebruch orbifold, then we can obtain generating functions of Donaldson-Thomas invariants.en_US
dc.identifierhttps://doi.org/10.13016/jmaj-9onk
dc.identifier.urihttp://hdl.handle.net/1903/25020
dc.language.isoenen_US
dc.subject.pqcontrolledMathematicsen_US
dc.titleModuli Spaces of Sheaves on Hirzebruch Orbifoldsen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wang_umd_0117E_20200.pdf
Size:
680.3 KB
Format:
Adobe Portable Document Format