Predictive Mechanistic Model of Creep Response of Single-Layered Pressure-Sensitive Adhesive (PSA) Joints

dc.contributor.authorHuang, Hao
dc.contributor.authorDasgupta, Abhijit
dc.contributor.authorSingh, Narendra
dc.date.accessioned2023-10-31T15:19:49Z
dc.date.available2023-10-31T15:19:49Z
dc.date.issued2021-07-08
dc.description.abstractThis paper explores the uniaxial tensile creep response of acrylic-based pressure-sensitive adhesive (PSA), which exhibits a unique multi-phase creep response that does not have the classical steady-state region due to multiple transitions caused by several competing mechanisms: (i) cavity nucleation and growth in the interior of the adhesive material of the PSA system, as well as at the interfaces between the PSA and the substrate; (ii) fibrillation of the bulk adhesive, and (iii) interfacial mechanical locking between the adhesive and the bonding substrate. This results in multiple regimes of strain hardening and strain softening, evidenced by multiple regions of steady-state creep, separated by strong transitions in the creep rates. This complex, multi-phase, nonlinear creep response cannot be described by conventional creep constitutive models commonly used for polymers in commercial finite element codes. Accordingly, based on the empirical uniaxial tensile creep response and the mechanisms behind it, a new mechanistic model was proposed. This is capable of quantitatively capturing the characteristic features of the multiphase creep response of single-layered PSA joints as a function of viscoelastic bulk properties and free energy of the PSA material, substrate surface roughness, and interfacial surface energy between the adhesive and substrate. This is the first paper to present the modeling approach for capturing unique multi-phase creep behavior of PSA joint under tensile loading.
dc.description.urihttps://doi.org/10.3390/ma14143815
dc.identifierhttps://doi.org/10.13016/dspace/3qoc-eae3
dc.identifier.citationHuang, H.; Dasgupta, A.; Singh, N. Predictive Mechanistic Model of Creep Response of Single-Layered Pressure-Sensitive Adhesive (PSA) Joints. Materials 2021, 14, 3815.
dc.identifier.urihttp://hdl.handle.net/1903/31227
dc.language.isoen_US
dc.publisherMDPI
dc.relation.isAvailableAtA. James Clark School of Engineeringen_us
dc.relation.isAvailableAtMechanical Engineeringen_us
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_us
dc.relation.isAvailableAtUniversity of Maryland (College Park, MD)en_us
dc.subjectpressure-sensitive adhesive
dc.subjectcreep
dc.subjectmechanistic modeling
dc.titlePredictive Mechanistic Model of Creep Response of Single-Layered Pressure-Sensitive Adhesive (PSA) Joints
dc.typeArticle
local.equitableAccessSubmissionNo

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
materials-14-03815.pdf
Size:
3.52 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.55 KB
Format:
Item-specific license agreed upon to submission
Description: