ORBITAL FLOOR REGENERATION USING CYCLIC ACETAL HYDROGELS THROUGH ENHANCED OSTEOGENIC CELL SIGNALING OF MESENCHYMAL STEM CELLS

dc.contributor.advisorFisher, John Pen_US
dc.contributor.authorBetz, Martha Wheatonen_US
dc.contributor.departmentBioengineeringen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2009-07-03T05:33:15Z
dc.date.available2009-07-03T05:33:15Z
dc.date.issued2009en_US
dc.description.abstractOrbital floor fractures are a serious consequence of craniofacial trauma and account for approximately 60-70% of all orbital fractures. Unfortunately, the body's natural response to orbital floor defects generally does not restore proper function and facial aesthetics which is complicated by the thin bone and adjacent sinuses. We propose using a tissue engineering strategy to regenerate orbital floor bone. To this end, a functional biomaterial was investigated to enhance orbital floor regeneration. First, a bone marrow stromal cell population was isolated and differentiation assessed via coculture with chondrocytes and osteogenic media supplements. A cyclic acetal biomaterial composed of the cyclic acetal monomer 5-ethyl-5-(hydroxymethyl)-β,β-dimethyl-1,3-dioxane-2-ethanol diacrylate (EHD) and poly(ethylene glycol) diacrylate (PEGDA) was then developed for cell encapsulation. The previously investigated bone marrow stromal cells were then used to determine the effects of the ammonium persulfate/N,N,N',N'-tetramethylethylenediamine initiator system used to crosslink the EH-PEG hydrogels on cell viability, metabolic activity, and osteogenic differentiation. Next, EH-PEG hydrogels were implanted into orbital floor defects with bone morphogenetic protein-2, where tissue response and surrounding bone growth was analyzed. To improve surrounding tissue interaction and cell infiltration, macroporous EH-PEG hydrogels were created using porogen-leaching. These hydrogels were characterized using optical coherence tomography for pore size, porosity, and cell viability. In addition, these macroporous hydrogels were created with varying architecture to analyze the effects on osteogenic signaling and differentiation. This work outlines the potential application of EH-PEG hydrogels for use in orbital floor repair.en_US
dc.format.extent2319675 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/9302
dc.language.isoen_US
dc.subject.pqcontrolledEngineering, Biomedicalen_US
dc.subject.pquncontrolledcyclic acetalen_US
dc.subject.pquncontrolledhydrogelsen_US
dc.subject.pquncontrolledorbital boneen_US
dc.subject.pquncontrolledtissue engineeringen_US
dc.titleORBITAL FLOOR REGENERATION USING CYCLIC ACETAL HYDROGELS THROUGH ENHANCED OSTEOGENIC CELL SIGNALING OF MESENCHYMAL STEM CELLSen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Betz_umd_0117E_10329.pdf
Size:
2.21 MB
Format:
Adobe Portable Document Format