AN EXPERIMENTAL INVESTIGATION ON SOLUTE NATURAL CONVECTION IN A VERTICAL HELE-SHAW CELL

Loading...
Thumbnail Image

Files

Publication or External Link

Date

2014

Citation

Abstract

An experimental analogue was developed to investigate instability propagation of a multicomponent fluid system in porous media. This type of flow pattern has been observed in a broad range of applications from oil enhanced recovery to geological storage of byproduct materials such as CO2. The main focus of this study is on the engineering instrumentation and implementation of experimental measurement techniques in microfluidic systems, more specifically in a thin-gap device that is used as a model for a saturated porous medium. Initially, quantitative in-plane velocity measurement by means of particle image velocimetry (PIV) within thin gap devices subject to a large depth-of-focus and Poiseuille flow conditions is studied extensively. The temporal velocity measurement is then coupled with a simultaneous concentration measurement by means of LED induced fluorescence (LIF).

The primary obstacles to a reliable quantitative PIV measurement are due to the effects of the inherent wall-normal velocity gradient and the inertial migration of particles in the wall-normal direction. After quantification of both effects, a novel measurement technique is proposed to make quantitative velocity measurement in microfluidic systems and narrow devices by manipulating the particles to their equilibrium position through inertial induced migration. This single camera technique is significantly simpler and cheaper to apply comparing to the existing multi-camera systems as well as micro-PIV implementations, which are restricted to a small field-of-view. A demonstration of a reliable PIV measurement under appropriate parameter design is then discussed for diffusive Rayleigh-Bénard convection in a Hele Shaw cell.

For concentration measurements, the main difficulty of making LIF quantitative is its highly sensitive response to the experimental settings due to extreme sensitivity of the fluorescence to the environment factors and illumination conditions. A calibration procedure is required prior to performing any meaningful quantitative measurements. Additionally, the effect of photobleaching can be significant, which impairs the measurement as will be discussed later in further detail. Eventually after calibration and correction methods for velocity and concentration measurement techniques, a simultaneous PIV/LIF is performed to quantify the behavior of instability fingers in the developed experimental system.

Notes

Rights