Classification of Closed Conformally Flat Lorentzian 3-Manifolds with Unipotent Holonomy

dc.contributor.advisorMelnick, Karinen_US
dc.contributor.advisorGoldman, Williamen_US
dc.contributor.authorLee, Nakyungen_US
dc.contributor.departmentMathematicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2023-10-06T05:46:36Z
dc.date.available2023-10-06T05:46:36Z
dc.date.issued2023en_US
dc.description.abstractA conformally flat manifold is a manifold that is locally conformally equivalent to a flat affine space. In this thesis, we classify closed conformally flat Lorentzian manifolds of dimension three whose holonomy group is unipotent. More specifically, we show that such a manifold is finitely covered by either $S^2\times S^1$ or a parabolic torus bundle. Furthermore, we show that such a manifold is Kleinian and is essential if and only if it can be covered by $S^2\times S^1$.en_US
dc.identifierhttps://doi.org/10.13016/dspace/nx3j-swoz
dc.identifier.urihttp://hdl.handle.net/1903/30779
dc.language.isoenen_US
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pquncontrolledGeometryen_US
dc.titleClassification of Closed Conformally Flat Lorentzian 3-Manifolds with Unipotent Holonomyen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lee_umd_0117E_23509.pdf
Size:
740.07 KB
Format:
Adobe Portable Document Format