Case Studies in AGN Feedback

dc.contributor.advisorReynolds, Christopher Sen_US
dc.contributor.advisorVeilleux, Sylvainen_US
dc.contributor.authorSmith, Robyn Nen_US
dc.contributor.departmentAstronomyen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2022-06-22T05:38:19Z
dc.date.available2022-06-22T05:38:19Z
dc.date.issued2022en_US
dc.description.abstractGalaxies in which the central supermassive black hole (SMBH) is actively accreting are referred to as active galactic nuclei (AGN) and are believed to play a crucial role in the evolution of both individual and clusters of galaxies. Empirically, the mass of the host galaxy and the mass of the SMBH are positively correlated. This is somewhat surprising given that the gravitational sphere of influence of the SMBH is orders or magnitude smaller than the host galaxy. The SMBH is believed to undergo periods of activity during which it is capable of powering galactic-scale outflows which in turn modulate star formation and therefore the overall mass of the host galaxy. Such processes are broadly referred to as feedback.Clusters of galaxies are the largest gravitationally bound systems in the universe. The intracluster medium (ICM) in relaxed clusters is strongly centrally peaked and suffi- ciently dense that it is expected to cool rapidly (in cosmological terms). Such cooling should create streams of cool gas flowing to the brightest cluster galaxy (BCG) which in turn should fuel high rates of star formation. Little evidence of either has been found giving rise to the ‘cooling flow problem’. AGN are again invoked to explain the absence of this cooling flow. The BCGs hosting AGN, often with powerful radio jets, are believed to inject energy into the ICM at a rate which can counteract the cooling. This cyclical nature of balancing the cooling is another form of AGN feedback. In this thesis, we present case studies of three AGN which provide unique insight into these feedback processes. Chapter 2 presents evidence for a relativistic X-ray driven outflow on accretion disk scales in an ultraluminous infrared galaxy known to host a galactic-scale molecular outflow. The observational properties which make a galaxy an ideal candidate for detection of large-scale outflows are intrinsically at odd with the properties which are ideal for detecting small-scale outflows. IRASF05189-2524, the subject of Chapter 2, is one of only a handful of galaxies for which positive detection of outflows on both small- and large-scale exist. Next, we turn our attention to AGN in BCGs and the cooling flow problem. Chapter 3 presents new Chandra observations of NGC 1275, the BCG in the famous Perseus Cluster. The high-cadence observing campaign finds X-ray variability on short intraweek timescales. The inclusion of archival observations reveals a general ‘harder when brighter’ trend. Examination of multiwavelength light curves finds a strongly correlated optical and γ-ray flare in late 2015 in which the optical emission leads the γ-ray emission by ~5 days. This robust (> 3σ) result is the first strong evidence of correlated emission with a time delay and is lends support to the idea that the γ-ray emission is produced by synchrotron self-Compton upscattering. In Chapter 4, we present new Chandra observations of the rare radio-quiet BCG quasar H1821+643. It is one of only two examples in the nearby universe of a highly luminous quasar with minimal radio jet activity at the center of a galaxy cluster. Despite observational challenges, we produce the first high-resolution spectrum of the quasar well-separated from the ICM in ~20 years. Our short-cadence observing campaign again reveals rapid variation on timescales corresponding to the light crossing time of the accretion disk. Although the flux varies, the spectrum is remarkably constant when compared to observations from previous decades. The result of this thesis is to add to the existing body of knowledge of AGN feedback on both galaxy and galaxy cluster scales. These three AGN presented various observing challenges which required a combination of non-standard observational techniques and data reduction methods in order to maximize results with current X-ray instrumentation.en_US
dc.identifierhttps://doi.org/10.13016/pr9w-mtcc
dc.identifier.urihttp://hdl.handle.net/1903/29005
dc.language.isoenen_US
dc.subject.pqcontrolledAstronomyen_US
dc.subject.pqcontrolledAstrophysicsen_US
dc.subject.pqcontrolledPhysicsen_US
dc.subject.pquncontrolledactive galactic nucleien_US
dc.subject.pquncontrolledblack holesen_US
dc.subject.pquncontrolledChandra X-ray Observatoryen_US
dc.subject.pquncontrolledgalaxiesen_US
dc.subject.pquncontrolledx-ray astronomyen_US
dc.titleCase Studies in AGN Feedbacken_US
dc.typeDissertationen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Smith_umd_0117E_22446.pdf
Size:
8.64 MB
Format:
Adobe Portable Document Format