Asymptotic Behavior in Nonlinear Stochastic Filtering

Loading...
Thumbnail Image

Files

MS_87-8.pdf (1.26 MB)
No. of downloads: 352

Publication or External Link

Date

1987

Citation

DRUM DOI

Abstract

A lower and upper bound approach on the optimal mean square error is used to study the asymptotic behavior of one dimensional nonlinear filters. Two aspects are treated: (1) The long time behavior (t Ġ. (2) The asmptotic behavior as a small parameter Ġ0. Lower and upper bounds that satisfy Riccati equations are derived and it is shown that for nonlinear systems with linear limiting systems, the Kalman filter designed for the limiting systems is asymptotically optimal in a reasonable sense. In the case of nonlinear systems with low measurement noise level, three asymptotically optimal filters are provided one of which is linear. In chapter 4, the stationary behavior of the Benes filter is investigated.

Notes

Rights