Risk-Sensitive and Minimax Control of Discrete-Time, Finite-State Markov Decision Processes

Loading...
Thumbnail Image
Files
TR_98-29.pdf(322.88 KB)
No. of downloads: 1032
Publication or External Link
Date
1998
Authors
Coraluppi, Stephano P.
Marcus, Steven I.
Advisor
Citation
DRUM DOI
Abstract
This paper analyzes a connection between risk-sensitive and minimaxcriteria for discrete-time, finite-states Markov Decision Processes(MDPs). We synthesize optimal policies with respect to both criteria,both for finite horizon and discounted infinite horizon problems. Ageneralized decision-making framework is introduced, which includes asspecial cases a number of approaches that have been considered in theliterature. The framework allows for discounted risk-sensitive andminimax formulations leading to stationary optimal policies on theinfinite horizon. We illustrate our results with a simple machinereplacement problem.
Notes
Rights