Sparse and Redundant Representations for Inverse Problems and Recognition
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
Sparse and redundant representation of data enables the
description of signals as linear combinations of a few atoms from
a dictionary. In this dissertation, we study applications of
sparse and redundant representations in inverse problems and
object recognition. Furthermore, we propose two novel imaging
modalities based on the recently introduced theory of Compressed
Sensing (CS).
This dissertation consists of four major parts. In the first part
of the dissertation, we study a new type of deconvolution
algorithm that is based on estimating the image from a shearlet
decomposition. Shearlets provide a multi-directional and
multi-scale decomposition that has been mathematically shown to
represent distributed discontinuities such as edges better than
traditional wavelets. We develop a deconvolution algorithm that
allows for the approximation inversion operator to be controlled
on a multi-scale and multi-directional basis. Furthermore, we
develop a method for the automatic determination of the threshold
values for the noise shrinkage for each scale and direction
without explicit knowledge of the noise variance using a
generalized cross validation method.
In the second part of the dissertation, we study a reconstruction
method that recovers highly undersampled images assumed to have a
sparse representation in a gradient domain by using partial
measurement samples that are collected in the Fourier domain. Our
method makes use of a robust generalized Poisson solver that
greatly aids in achieving a significantly improved performance
over similar proposed methods. We will demonstrate by experiments
that this new technique is more flexible to work with either
random or restricted sampling scenarios better than its
competitors.
In the third part of the dissertation, we introduce a novel
Synthetic Aperture Radar (SAR) imaging modality which can provide
a high resolution map of the spatial distribution of targets and
terrain using a significantly reduced number of needed transmitted
and/or received electromagnetic waveforms. We demonstrate that
this new imaging scheme, requires no new hardware components and
allows the aperture to be compressed. Also, it
presents many new applications and advantages which include strong
resistance to countermesasures and interception, imaging much
wider swaths and reduced on-board storage requirements.
The last part of the dissertation deals with object recognition
based on learning dictionaries for simultaneous sparse signal
approximations and feature extraction. A dictionary is learned
for each object class based on given training examples which
minimize the representation error with a sparseness constraint. A
novel test image is then projected onto the span of the atoms in
each learned dictionary. The residual vectors along with the
coefficients are then used for recognition. Applications to
illumination robust face recognition and automatic target
recognition are presented.