Long time stability of rotational Euler dynamics

dc.contributor.advisorTadmor, Eitanen_US
dc.contributor.authorCheng, Binen_US
dc.contributor.departmentApplied Mathematics and Scientific Computationen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2007-09-28T14:56:17Z
dc.date.available2007-09-28T14:56:17Z
dc.date.issued2007-05-16en_US
dc.description.abstractWe study the stabilizing effect of rotational forcing in the nonlinear setting of two-dimensional shallow-water and Euler equations. We prove that when rotational force dominates the pressure, it prolongs the life-span of smooth solutions for $t\lesssim 1+\ln(\delta^{-1})$ where $\delta\ll 1$ is the ratio of the (inverse of) squared Froude number measuring the amplitude of pressure, relative to the (inverse of) Rossby number, measuring the dominant rotational force. The strong rotation also imposes certain periodicity to the flow in the sense that there exists a ``nearby'' periodic-in-time approximation of the exact solution. In the opposite regime of large $\delta$'s, the flow is dispersive so that the divergence field substantially decays in finite time and therefore periodicity is not retained.en_US
dc.format.extent359160 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/7155
dc.language.isoen_US
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pquncontrolledshallow water equationsen_US
dc.subject.pquncontrolledrapid rotationen_US
dc.subject.pquncontrolledapproximate periodicityen_US
dc.subject.pquncontrolledcritical thresholden_US
dc.subject.pquncontrolledlong time stabilityen_US
dc.subject.pquncontrolleddispersiveen_US
dc.titleLong time stability of rotational Euler dynamicsen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
umi-umd-4511.pdf
Size:
350.74 KB
Format:
Adobe Portable Document Format