Parallel Computation of Nonrigid Image Registration
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
Automatic intensity-based nonrigid image registration brings significant impact in medical applications such as multimodality fusion of images, serial comparison for monitoring disease progression or regression, and minimally invasive image-guided interventions. However, due to memory and compute intensive nature of the operations, intensity-based image registration has remained too slow to be practical for clinical adoption, with its use limited primarily to as a pre-operative too. Efficient registration methods can lead to new possibilities for development of improved and interactive intraoperative tools and capabilities.
In this thesis, we propose an efficient parallel implementation for intensity-based three-dimensional nonrigid image registration on a commodity graphics processing unit. Optimization techniques are developed to accelerate the compute-intensive mutual information computation. The study is performed on the hierarchical volume subdivision-based algorithm, which is inherently faster than other nonrigid registration algorithms and structurally well-suited for data-parallel computation platforms. The proposed implementation achieves more than 50-fold runtime improvement over a standard implementation on a CPU. The execution time of nonrigid image registration is reduced from hours to minutes while retaining the same level of registration accuracy.