Near quantum limited measurement in nanoelectromechanical systems

dc.contributor.advisorSchwab, Keithen_US
dc.contributor.authorNaik, Akshayen_US
dc.contributor.departmentElectrical Engineeringen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2006-09-12T06:09:43Z
dc.date.available2006-09-12T06:09:43Z
dc.date.issued2006-09-07en_US
dc.description.abstractNanoelectromechanical systems have many potential applications in nanoelectronics as well as in fundamental studies of quantum mechanics in mesoscopic systems. Nanoelectromechanical systems have been touted as an extension of microelectromechanical systems which would operate at higher frequencies and consume far less power due their higher quality factors. Since these systems can be cooled close to their ground states with existing cryogenic techniques, they are useful tools to study the quantum effects like backaction, coherent states and superposition in mesoscopic mechanical systems. Also there have been proposals to use these systems as qubits and buses in quantum computing. In this thesis I discuss the effects of the backaction of a superconducting single electron transistor that measures the position of a radio frequency nanomechanical resonator. One of the novel effects of this backaction is the cooling of the nanomechanical resonator. The fact that a system can be cooled by merely coupling it to noisy non-equilibrium device is a counterintuitive phenomenon. Although backaction effects have been used to produce ultra-cold atoms, our results are the first demonstration of this cooling effect in a mesoscopic system. For a linear continuous position detection scheme, quantum mechanics places a lower limit on the product of position shot noise, Sx, and the backaction force noise, SF, which is given by, (S_x S_F)^(1/2)> hbar/2 As part of this work we demonstrate that our detection scheme is only 15 times away from this limit and only 4 times away from quantum limit for position sensitivity.en_US
dc.format.extent4154313 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/3954
dc.language.isoen_US
dc.subject.pqcontrolledPhysics, Condensed Matteren_US
dc.subject.pquncontrolledBackactionen_US
dc.subject.pquncontrolledSingle electron transistoren_US
dc.subject.pquncontrolledcoolingen_US
dc.subject.pquncontrollednanoelectromechanical systemen_US
dc.subject.pquncontrollednanomechanics;en_US
dc.titleNear quantum limited measurement in nanoelectromechanical systemsen_US
dc.typeDissertationen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
umi-umd-3834.pdf
Size:
3.96 MB
Format:
Adobe Portable Document Format