Using machine learning to measure the cross section of top quark pairs in the muon+jets channel at the Compact Muon Solenoid

dc.contributor.advisorHadley, Nicholasen_US
dc.contributor.authorKirn, Malina Aureliaen_US
dc.contributor.departmentApplied Mathematics and Scientific Computationen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2012-02-17T06:37:39Z
dc.date.available2012-02-17T06:37:39Z
dc.date.issued2011en_US
dc.description.abstractThe cross section for pp to top-antitop production at a center of mass energy of 7 TeV is measured using a data sample with integrated luminosity 36.1 inverse pb collected by the CMS detector at the LHC. The analysis is performed on a computing grid. Events with an isolated muon and three hadronic jets are analyzed using a multivariate machine learning algorithm. Kinematic variables and b tags are provided as input to the algorithm; output from the algorithm is used in a maximum likelihood fit to determine top-antitop event yield. The measured cross section is 151 +/- 15(stat.) +35/-28(syst.) +/- 6(lumi.) pb.en_US
dc.identifier.urihttp://hdl.handle.net/1903/12223
dc.subject.pqcontrolledParticle physicsen_US
dc.subject.pqcontrolledComputer scienceen_US
dc.subject.pquncontrolledCompact Muon Solenoiden_US
dc.subject.pquncontrolledcross sectionen_US
dc.subject.pquncontrolledgrid computingen_US
dc.subject.pquncontrolledneural networken_US
dc.subject.pquncontrolledtop quarken_US
dc.titleUsing machine learning to measure the cross section of top quark pairs in the muon+jets channel at the Compact Muon Solenoiden_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kirn_umd_0117E_12660.pdf
Size:
32.98 MB
Format:
Adobe Portable Document Format