Predicting the Complexity of Disconnected Basins of Attraction for a Noninvertible System

dc.contributor.authorAdomaitis, Raymond A.en_US
dc.contributor.authorKevrekidis, Ioannis G.en_US
dc.contributor.authorLlave, Rafael de laen_US
dc.contributor.departmentISRen_US
dc.date.accessioned2007-05-23T09:47:53Z
dc.date.available2007-05-23T09:47:53Z
dc.date.issued1991en_US
dc.description.abstractA noninvertible, two-dimensional, discrete-time system featuring multistability is presented. Because the preimage behavior of this system is a function of location in phase space, the boundary separating the basins of attraction can be disconnected. These "polka-dot" basins of attraction have either a finite number of preimages (giving a finitely-complicated basin) or infinitely many (giving infinite complexity). A complexity criterion based on following the noninvertible region forward in time is presented and a fixed-point algorithm for computing the boundary of the "complete" noninvertible region is discussed.en_US
dc.format.extent640255 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/5089
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; TR 1991-41en_US
dc.subjectnonlinear systemsen_US
dc.subjectstabilityen_US
dc.subjectnonlinear dynamicsen_US
dc.subjectChemical Process Systemsen_US
dc.titlePredicting the Complexity of Disconnected Basins of Attraction for a Noninvertible Systemen_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR_91-41.pdf
Size:
625.25 KB
Format:
Adobe Portable Document Format