GOOD POSITION BRAIDS, TRANSVERSAL SLICES AND AFFINE SPRINGER FIBERS

dc.contributor.advisorHaines, Thomas THen_US
dc.contributor.authorDuan, Chengzeen_US
dc.contributor.departmentMathematicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2024-09-23T05:41:45Z
dc.date.available2024-09-23T05:41:45Z
dc.date.issued2024en_US
dc.description.abstractIn the study of Iwahori-Hecke algebras, Geck and Pfeiffer introduced good elements inCoxeter groups. These elements played a crucial role in the work of He and Lusztig on generalizing Steinberg’s cross-sections and Steinberg slices. This work yields the transversal slices for basic unipotent conjugacy classes in a reductive group G. We improve this result by introducing some more general braid elements called good position braids. We use them to construct transversal slices for any unipotent conjugacy classes in G. On the other hand, these good position braids also correspond to affine Springer fibers via root valuation strata. The correspondence leads to a reformulation of the dimension formula of affine Springer fibers. We also expect these braid elements to help with a conjecture of Goresky, Kottwitz and MacPherson on the cohomology of affine Springer fibers.en_US
dc.identifierhttps://doi.org/10.13016/7tij-sxhb
dc.identifier.urihttp://hdl.handle.net/1903/33297
dc.language.isoenen_US
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pquncontrolledAffine Springer fibersen_US
dc.subject.pquncontrolledAlgebraic groupsen_US
dc.subject.pquncontrolledBraid groupsen_US
dc.subject.pquncontrolledTransversal slicesen_US
dc.titleGOOD POSITION BRAIDS, TRANSVERSAL SLICES AND AFFINE SPRINGER FIBERSen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Duan_umd_0117E_24468.pdf
Size:
725.72 KB
Format:
Adobe Portable Document Format