ENABLING RAPID PHENOTYPIC DETECTION OF CEPHALOSPORIN RESISTANCE BEYOND THE CENTRAL LABORATORY
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
The so-called bacterial “superbugs” are largely resistant to some of the most commonly prescribed antibiotics, including a drug class known as cephalosporins used to treat many hospital and community-acquired infections. This major public health threat has been acknowledged for decades by the Centers for Disease Control (CDC) as a major concern; yet, the detection of superbugs has not been made routine since standard testing practices have been limited to specialized “central” laboratories with sophisticated yet bulky and expensive equipment and highly trained personnel. As a result, the lack of simpler testing methods that can be used in everyday clinics and doctor’s offices can be viewed as a source of error contributing to incorrect antibiotic treatment and poorer patient outcomes, factors that drive even more advanced resistance, depleting our drugs or last resort.
In this dissertation, we explore new strategies for simplified methods to test for cephalosporin resistance in order to give higher accessibility in the timely detection of superbugs to support the improvement of patient care. To do this, we take an organic chemistry and biochemical approach to develop new detection molecules that report resistance activity in bacteria expressing extended-spectrum β-lactamase (ESBL) enzymes, one of the most prolific resistance strategies used by superbugs. Next, we describe methods of integrating these detection molecules into practical testing methods, and detail the engineering of simpler assays that allow for rapid readout of ESBL phenotypes using commonplace laboratory plate readers, portable Raman devices, and even handheld personal glucose meters (used for diabetes monitoring) purchased from the drugstore.