Gabor Representations and Wavelets.

dc.contributor.authorBenedetto, John J.en_US
dc.contributor.departmentISRen_US
dc.date.accessioned2007-05-23T09:39:09Z
dc.date.available2007-05-23T09:39:09Z
dc.date.issued1987en_US
dc.description.abstractOur modest goal in this paper is to define a generalization of the Fourier transform of L^1(R) and to prove the L^1(R) norm inversion theorem for such a transform (Theorem 1.5). Wiener's notion of deterministic autocorrelation (from the late 1920s) arises naturally in the proof of this result; and Gabor's representation of signals (from 1946), which is a fundamental example of wavelet decomposition, provides the setting.en_US
dc.format.extent811716 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/4676
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; TR 1987-171en_US
dc.titleGabor Representations and Wavelets.en_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR_87-171.pdf
Size:
792.69 KB
Format:
Adobe Portable Document Format