Fast Algorithms for 2-D Circular Convolutions and Number Theoretic Transforms Based on Polynomial Transforms over Finite Rings

dc.contributor.authorRan, X.en_US
dc.contributor.authorLiu, K.J. Rayen_US
dc.contributor.departmentISRen_US
dc.date.accessioned2007-05-23T09:51:25Z
dc.date.available2007-05-23T09:51:25Z
dc.date.issued1992en_US
dc.description.abstractIn this paper, we develop new fast algorithms for 2-D integer circular convolutions and 2-D Number Theoretic Transforms (NTT). These new algorithms, which offers improved computational complexity, are constructed based on polynomial transforms over Zp; these transforms are Fourier-like transforms over Zp [x ] which is the integral domain of polynomial forms over Zp. Having defined such polynomial transforms over Zp, we prove several necessary and sufficient conditions for their existence. We then apply the existence conditions to recognize two applicable polynomial transforms over Zp: One is for p equal to Mersenne numbers and the other for Fermat numbers. Based on these two transforms, referred to as Mersenne Number Polynomial Transforms (MNPT) and Fermat Number Polynomial Transforms (FNPT), we develop fast algorithms for 2-D integer circular convolutions, 2-D Mersenne Number Transforms, and 2-D Fermat Number Transforms. As compared to the conventional row-column computation of 2-D NTT for 2-D integer circular convolutions and 2-D NTTs, the new algorithms give rise to reduced computational complexities by saving more than 25% or 42% in numbers of operations for multiplying 2i, i 1; these percentages of savings also grow with the size of the 2-D integer circular convolutions or the 2-D NTTs.en_US
dc.format.extent1423728 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/5269
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; TR 1992-88en_US
dc.subjectfilteringen_US
dc.subjectsignal processingen_US
dc.subjectSystems Integrationen_US
dc.titleFast Algorithms for 2-D Circular Convolutions and Number Theoretic Transforms Based on Polynomial Transforms over Finite Ringsen_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR_92-88.pdf
Size:
1.36 MB
Format:
Adobe Portable Document Format