DATA-DRIVEN ANALYTICAL MODELS FOR IDENTIFICATION AND PREDICTION OF OPPORTUNITIES AND THREATS
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
During the lifecycle of mega engineering projects such as: energy facilities,
infrastructure projects, or data centers, executives in charge should take into account
the potential opportunities and threats that could affect the execution of such projects.
These opportunities and threats can arise from different domains; including for
example: geopolitical, economic or financial, and can have an impact on different
entities, such as, countries, cities or companies. The goal of this research is to provide
a new approach to identify and predict opportunities and threats using large and diverse
data sets, and ensemble Long-Short Term Memory (LSTM) neural network models to
inform domain specific foresights. In addition to predicting the opportunities and
threats, this research proposes new techniques to help decision-makers for deduction
and reasoning purposes. The proposed models and results provide structured output to
inform the executive decision-making process concerning large engineering projects
(LEPs). This research proposes new techniques that not only provide reliable timeseries
predictions but uncertainty quantification to help make more informed decisions.
The proposed ensemble framework consists of the following components: first,
processed domain knowledge is used to extract a set of entity-domain features; second,
structured learning based on Dynamic Time Warping (DTW), to learn similarity
between sequences and Hierarchical Clustering Analysis (HCA), is used to determine
which features are relevant for a given prediction problem; and finally, an automated
decision based on the input and structured learning from the DTW-HCA is used to
build a training data-set which is fed into a deep LSTM neural network for time-series
predictions. A set of deeper ensemble programs are proposed such as Monte Carlo
Simulations and Time Label Assignment to offer a controlled setting for assessing the
impact of external shocks and a temporal alert system, respectively. The developed
model can be used to inform decision makers about the set of opportunities and threats
that their entities and assets face as a result of being engaged in an LEP accounting for
epistemic uncertainty.