ThermWare: Toward Side-channel Defense for Tiny IoT Devices
ThermWare: Toward Side-channel Defense for Tiny IoT Devices
Loading...
Files
Publication or External Link
Date
2023-02-22
Authors
Garg, Nakul
Shahid, Irtaza
Avllazagaj, Erin
Hill, Jennie
Han, Jun
Roy, Nirupam
Advisor
Citation
Nakul Garg, Irtaza Shahid, Erin Avllazagaj, Jennie Hill, Jun Han†, Nirupam Roy. 2023. ThermWare: Toward Side-channel Defense for Tiny IoT Devices. In The 24th International Workshop on Mobile Computing Systems and Applications (HotMobile ’23), February 22–23, 2023, Newport Beach, CA, USA. ACM, New York, NY, USA, 8 pages.
Abstract
As malware in IoT devices !ourishes, defenses are lacking.
Traditional antivirus or intrusion detection-based defense
techniques fail for the limited computational capabilities and
the large diversity of platforms and environments. In this paper,
we present ThermWare, a non-intrusive screening method to
detect anomalous operations on embedded devices at run-time.
ThermWare relies on the observation that electronic circuits
generate subtle patterns of heat at the component level when
the corresponding module is accessed by the micro-operations
(e.g., file-write) of the running code. We propose the use of these
side-channel heat signatures captured by a thermal camera to
determine the sequence of underlying computations in real time.
An early implementation of ThermWare shows success in detecting
common malware routines in general-purpose IoT devices. We
envision leveraging the thermal side-channel to track the internal
operations of an embedded device, which can potentially lead to
broader applications in engineering embedded systems, monitoring
device health and run-time capacity, assisting embedded coding
optimization, and physical layer security analysis.