Recursive computation of spherical harmonic rotation coefficients of large degree

dc.contributor.authorGumerov, Nail A.
dc.contributor.authorDuraiswami, Ramani
dc.date.accessioned2014-03-30T15:44:44Z
dc.date.available2014-03-30T15:44:44Z
dc.date.issued2014-03-28
dc.description.abstractComputation of the spherical harmonic rotation coefficients or elements of Wigner's d-matrix is important in a number of quantum mechanics and mathematical physics applications. Particularly, this is important for the Fast Multipole Methods in three dimensions for the Helmholtz, Laplace and related equations, if rotation-based decomposition of translation operators are used. In these and related problems related to representation of functions on a sphere via spherical harmonic expansions computation of the rotation coefficients of large degree n (of the order of thousands and more) may be necessary. Existing algorithms for their computation, based on recursions, are usually unstable, and do not extend to n. We develop a new recursion and study its behavior for large degrees, via computational and asymptotic analyses. Stability of this recursion was studied based on a novel application of the Courant-Friedrichs-Lewy condition and the von Neumann method for stability of finite-difference schemes for solution of PDEs. A recursive algorithm of minimal complexity O(n^2) for degree n and FFT-based algorithms of complexity O(n^2 log n) suitable for computation of rotation coefficients of large degrees are proposed, studied numerically, and cross-validated. It is shown that the latter algorithm can be used for n <~ 10^3 in double precision, while the former algorithm was tested for large n (up to 10^4 in our experiments) and demonstrated better performance and accuracy compared to the FFT-based algorithm.en_US
dc.identifier.urihttp://hdl.handle.net/1903/15013
dc.language.isoen_USen_US
dc.relation.ispartofseriesUM Computer Science Department;CS-TR-5037
dc.relation.ispartofseriesUMIACS;UMIACS-TR-2014-04
dc.titleRecursive computation of spherical harmonic rotation coefficients of large degreeen_US
dc.typeTechnical Reporten_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
UMIACS-TR-2014-04.pdf
Size:
4.2 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.57 KB
Format:
Item-specific license agreed upon to submission
Description: