Recursive computation of spherical harmonic rotation coefficients of large degree
Recursive computation of spherical harmonic rotation coefficients of large degree
Loading...
Files
Publication or External Link
Date
2014-03-28
Authors
Gumerov, Nail A.
Duraiswami, Ramani
Advisor
Citation
DRUM DOI
Abstract
Computation of the spherical harmonic rotation coefficients or elements
of Wigner's d-matrix is important in a number of quantum mechanics and
mathematical physics applications. Particularly, this is important for
the Fast Multipole Methods in three dimensions for the Helmholtz,
Laplace and related equations, if rotation-based decomposition of
translation operators are used. In these and related problems related to
representation of functions on a sphere via spherical harmonic
expansions computation of the rotation coefficients of large degree n
(of the order of thousands and more) may be necessary. Existing
algorithms for their computation, based on recursions, are usually
unstable, and do not extend to n. We develop a new recursion and study
its behavior for large degrees, via computational and asymptotic
analyses. Stability of this recursion was studied based on a novel
application of the Courant-Friedrichs-Lewy condition and the von Neumann
method for stability of finite-difference schemes for solution of PDEs.
A recursive algorithm of minimal complexity O(n^2) for degree n and
FFT-based algorithms of complexity O(n^2 log n) suitable for computation
of rotation coefficients of large degrees are proposed, studied
numerically, and cross-validated. It is shown that the latter algorithm
can be used for n <~ 10^3 in double precision, while the former
algorithm was tested for large n (up to 10^4 in our experiments) and
demonstrated better performance and accuracy compared to the FFT-based
algorithm.