BUILDING EFFICIENT AND COST-EFFECTIVE CLOUD-BASED BIG DATA MANAGEMENT SYSTEMS
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
In today’s big data world, data is being produced in massive volumes, at great velocity
and from a variety of different sources such as mobile devices, sensors, a plethora
of small devices hooked to the internet (Internet of Things), social networks, communication
networks and many others. Interactive querying and large-scale analytics are being
increasingly used to derive value out of this big data. A large portion of this data is being
stored and processed in the Cloud due the several advantages provided by the Cloud such
as scalability, elasticity, availability, low cost of ownership and the overall economies
of scale. There is thus, a growing need for large-scale cloud-based data management
systems that can support real-time ingest, storage and processing of large volumes of heterogeneous data. However, in the pay-as-you-go Cloud environment, the cost of analytics
can grow linearly with the time and resources required. Reducing the cost of data analytics
in the Cloud thus remains a primary challenge. In my dissertation research, I have
focused on building efficient and cost-effective cloud-based data management systems for
different application domains that are predominant in cloud computing environments.
In the first part of my dissertation, I address the problem of reducing the cost of
transactional workloads on relational databases to support database-as-a-service in the
Cloud. The primary challenges in supporting such workloads include choosing how to
partition the data across a large number of machines, minimizing the number of distributed
transactions, providing high data availability, and tolerating failures gracefully.
I have designed, built and evaluated SWORD, an end-to-end scalable online transaction
processing system, that utilizes workload-aware data placement and replication to minimize
the number of distributed transactions that incorporates a suite of novel techniques
to significantly reduce the overheads incurred both during the initial placement of data,
and during query execution at runtime.
In the second part of my dissertation, I focus on sampling-based progressive analytics
as a means to reduce the cost of data analytics in the relational domain. Sampling has
been traditionally used by data scientists to get progressive answers to complex analytical
tasks over large volumes of data. Typically, this involves manually extracting samples
of increasing data size (progressive samples) for exploratory querying. This provides the
data scientists with user control, repeatable semantics, and result provenance. However,
such solutions result in tedious workflows that preclude the reuse of work across samples.
On the other hand, existing approximate query processing systems report early results,
but do not offer the above benefits for complex ad-hoc queries. I propose a new progressive
data-parallel computation framework, NOW!, that provides support for progressive
analytics over big data. In particular, NOW! enables progressive relational (SQL) query
support in the Cloud using unique progress semantics that allow efficient and deterministic
query processing over samples providing meaningful early results and provenance
to data scientists. NOW! enables the provision of early results using significantly fewer
resources thereby enabling a substantial reduction in the cost incurred during such analytics.
Finally, I propose NSCALE, a system for efficient and cost-effective complex analytics
on large-scale graph-structured data in the Cloud. The system is based on the
key observation that a wide range of complex analysis tasks over graph data require processing and reasoning about a large number of multi-hop neighborhoods or subgraphs in
the graph; examples include ego network analysis, motif counting in biological networks,
finding social circles in social networks, personalized recommendations, link prediction,
etc. These tasks are not well served by existing vertex-centric graph processing frameworks
whose computation and execution models limit the user program to directly access
the state of a single vertex, resulting in high execution overheads. Further, the lack of
support for extracting the relevant portions of the graph that are of interest to an analysis
task and loading it onto distributed memory leads to poor scalability. NSCALE allows
users to write programs at the level of neighborhoods or subgraphs rather than at the level
of vertices, and to declaratively specify the subgraphs of interest. It enables the efficient
distributed execution of these neighborhood-centric complex analysis tasks over largescale
graphs, while minimizing resource consumption and communication cost, thereby
substantially reducing the overall cost of graph data analytics in the Cloud.
The results of our extensive experimental evaluation of these prototypes with several
real-world data sets and applications validate the effectiveness of our techniques
which provide orders-of-magnitude reductions in the overheads of distributed data querying
and analysis in the Cloud.