Filtering Tweets for Social Unrest

dc.contributor.authorMishler, Alan
dc.contributor.authorWonus, Kevin
dc.contributor.authorChambers, Wendy
dc.contributor.authorBloodgood, Michael
dc.date.accessioned2017-04-02T01:32:24Z
dc.date.available2017-04-02T01:32:24Z
dc.date.issued2017-01
dc.description.abstractSince the events of the Arab Spring, there has been increased interest in using social media to anticipate social unrest. While efforts have been made toward automated unrest prediction, we focus on filtering the vast volume of tweets to identify tweets relevant to unrest, which can be provided to downstream users for further analysis. We train a supervised classifier that is able to label Arabic language tweets as relevant to unrest with high reliability. We examine the relationship between training data size and performance and investigate ways to optimize the model building process while minimizing cost. We also explore how confidence thresholds can be set to achieve desired levels of performance.en_US
dc.identifierhttps://doi.org/10.13016/M2JZ6J
dc.identifier.citationAlan Mishler, Kevin Wonus, Wendy Chambers, and Michael Bloodgood. Filtering Tweets for Social Unrest. In Proceedings of the 2017 IEEE 11th International Conference on Semantic Computing (ICSC), pages 17-23, San Diego, CA, USA, January 2017. IEEE.en_US
dc.identifier.otherDOI: 10.1109/ICSC.2017.75
dc.identifier.urihttp://ieeexplore.ieee.org/document/7889498/
dc.identifier.urihttp://hdl.handle.net/1903/19182
dc.language.isoen_USen_US
dc.publisherIEEEen_US
dc.relation.isAvailableAtCenter for Advanced Study of Language
dc.relation.isAvailableAtDigitial Repository at the University of Maryland
dc.relation.isAvailableAtUniversity of Maryland (College Park, Md)
dc.subjectcomputer scienceen_US
dc.subjectstatistical methodsen_US
dc.subjectartificial intelligenceen_US
dc.subjectmachine learningen_US
dc.subjectcomputational linguisticsen_US
dc.subjectnatural language processingen_US
dc.subjecthuman language technologyen_US
dc.subjecttext processingen_US
dc.subjectactive learningen_US
dc.subjectselective samplingen_US
dc.subjectstopping criteriaen_US
dc.subjectstopping methodsen_US
dc.subjecttext classificationen_US
dc.subjecttext filteringen_US
dc.subjectsocial mediaen_US
dc.subjectsocial unresten_US
dc.titleFiltering Tweets for Social Unresten_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ICSC2017.pdf
Size:
2.24 MB
Format:
Adobe Portable Document Format
Description: