Representation of speech in the primary auditory cortex and its implications for robust speech processing

Thumbnail Image


umi-umd-5695.pdf (14.37 MB)
No. of downloads: 524

Publication or External Link






Speech has evolved as a primary form of communication between humans. This most used means of communication has been the subject of intense study for years, but there is still a lot that we do not know about it. It is an oft repeated fact, that even the performance of the best speech processing algorithms still lags far behind that of the average human, It seems inescapable that unless we know more about the way the brain performs this task, our machines can not go much further. This thesis focuses on the question of speech representation in the brain, both from a physiological and technological perspective. We explore the representation of speech through the encoding of its smallest elements - phonemic features - in the primary auditory cortex. We report on how population of neurons with diverse tuning properties respond discriminately to phonemes resulting in explicit encoding of their parameters. Next, we show that this sparse encoding of the phonemic features is a simple consequence of the linear spectro-temporal properties of the auditory cortical neurons and that a Spectro-Temporal receptive field model can predict similar patterns of activation. This is an important step toward the realization of systems that operate based on the same principles as the cortex. Using an inverse method of reconstruction, we shall also explore the extent to which phonemic features are preserved in the cortical representation of noisy speech. The results suggest that the cortical responses are more robust to noise and that the important features of phonemes are preserved in the cortical representation even in noise. Finally, we explain how a model of this cortical representation can be used for speech processing and enhancement applications to improve their robustness and performance.