CHARGE ORDER AND STRUCTURAL TRANSITION IN TOPOLOGICAL SEMIMETAL FAMILY AAL4
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
The BaAl$_4$-type structure hosts a variety of interesting and exotic properties, with descendant crystal structure resulting numerous interesting ground states of matter including magnetic, super-conducting and strongly correlated electron phenomena. BaAl$_4$ itself has recently been shown to host a non-trivial topological band structure, but is otherwise a paramagnetic metal. However, the other members of the 1-4 family, such as SrAl$_4$ and EuAl$_4$, exhibit symmetry-breaking ground states including charge density wave (CDW) and magnetic order, respectively. SrAl$_4$ hosts a second transition at 94K that is hysteretic in temperature and is a structural transition to a monoclinic structure. Here I report on the charge density wave in SrAl$4$ and the effect of the structural transition on the physical and electronic properties of the material. The structural transition is extremely subtle with deviation of around 0.5 degrees from the tetragonal structure but shows significant changes in resistivity, Hall and magnetic susceptibility measurements. This transition is extremely sensitive to disorder and can be suppressed completely by substituting 1$%$ Ba nominally or using less pure Sr during crystal growth. Furthermore, magnetoresistance in this material is extremely large, and can be up to 140 times at 2K. A combination of magnetoresistance and Hall measurements are used to fit the data to a two band model to extract carrier density and mobility of the charge carriers at 2K. Finally, work was done on the evolution of the charge-ordered state in high quality single crystals of the solid solution series Ba${1-x}$Sr$_x$Al$_4$, using transport, thermodynamic and scattering experiments to track the 243 K CDW order in SrAl$_4$ as it is suppressed with Ba substitution until its demise at x =0.5. Neutron and x-ray diffraction measurements reveal a nearly commensurate CDW state in SrAl$_4$ with ordering vector (0,0,0.097) that evolves with Ba substitution to (0,0,0.18) and (0,0,0.21) for x=0.8 and x=0.55, respectively. DFT calculations show a softening of phonons in SrAl$_4$ hinting at electron phonon coupling strength being the source of the charge order in this material. Similar calculations are done on the Ba substitutions to investigate the nature of the charge density waves. With very little change in the lattice parameters in this series, this evolution raises important questions about the nature of the electronic structure that directs a dramatic change in charge ordering.