Dynamic, Transient and Stationary Behavior of the M/GI/1 Queue.

dc.contributor.authorBaccelli, Francoisen_US
dc.contributor.authorMakowski, Armand M.en_US
dc.contributor.departmentISRen_US
dc.date.accessioned2007-05-23T09:41:25Z
dc.date.available2007-05-23T09:41:25Z
dc.date.issued1988en_US
dc.description.abstractAn exponential martingale is associated with the Markov chain of the number of customers in the M/GI/1 queue. This together with renewal theory are shown to provide a unified probabilistic framework for deriving several well-known generating functions for the M/GI/1 queue, including the Pollaczek-Khinchine formula, the transient generating function of the number of customers at departure epochs and the generating function of the number of customers served in a busy period.en_US
dc.format.extent354531 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/4776
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; TR 1988-47en_US
dc.titleDynamic, Transient and Stationary Behavior of the M/GI/1 Queue.en_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR_88-47.pdf
Size:
346.22 KB
Format:
Adobe Portable Document Format