Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Excited Nucleon and Delta Spectra From Lattice QCD

    Thumbnail
    View/Open
    Engelson_umd_0117E_10596.pdf (1.351Mb)
    No. of downloads: 610

    Date
    2009
    Author
    Engelson, Eric
    Advisor
    Wallace, Stephen J
    Metadata
    Show full item record
    Abstract
    We calculate the nucleon and delta excited state spectra from lattice QCD. Operators which transform as irreducible representations of the lattice symmetry group are used as bases for variational calculations. We compute matrices of corre- lation functions between all the operators in the variational bases. From the time dependence of the eigenvalues of these matrices, we extract energy eigenvalues. By subducing the continuum SU(3) rotation group to the octahedral group, we can identify the spins of the continuum states which correspond to the lattice states. In the nucleon spectrum calculation, we use 24^3 × 64 anisotropic lattices with pion masses of 416 MeV and 576 MeV. The lattices have a spacing of about 0.1 fm and an anisotropy of 3. We use the Wilson gauge and the Wilson fermion actions with two flavors of dynamical light quarks. The low-lying spectrum has many of the qualitative features of the physical spectrum and we are able to identify the continuum states which correspond to several of the lattice states. This includes one of the first observations of a spin- 5 state on the lattice. For the delta spectrum calculation, we use 16^3 × 128 anisotropic lattices. The gauge action is the tree-level tadpole improved Wilson gauge action, while in the fermion sector we use the clover action. The pion mass is about 390 MeV and the anisotropy is 3.5. We have two flavors of dynamical light quarks as well as dynamical strange quarks. To compute the correlation functions, we use the distillation method in which operators are projected on the the low lying eigenmodes of the Laplacian operator, allowing for an exact computation of all-to-all propagators between the distilled source and sink operators. We are able to identify four low-lying states with continuum delta states.
    URI
    http://hdl.handle.net/1903/9564
    Collections
    • Physics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility