Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    MULTIPHOTON ABSORPTION: FABRICATION, FUNCTIONALIZATION AND APPLICATIONS

    Thumbnail
    View/Open
    Li_umd_0117E_10578.pdf (36.76Mb)
    No. of downloads: 438

    Date
    2009
    Author
    Li, Linjie
    Advisor
    Fourkas, John T
    Metadata
    Show full item record
    Abstract
    Despite the remarkable progress in micro/nano-scale fabrication that has occurred over the last decades, feature sizes are still restricted by the diffraction limit. The resolution in conventional photolithography is generally constrained to approximately one quarter of a wavelength (lamda) of the light used. Multiphoton absorption polymerization (MAP) offers another option for high-resolution fabrication. Using nonlinear optical and chemical effects, MAP can generate features with a transverse dimension as small as 80 nm using 800-nm laser excitation. MAP has the additional capability of fabricating arbitrary 3D structures, which is essential in many applications. Details of MAP fabrication setup and process are described in this thesis. Novel optical devices have been fabricated with MAP. One drawback of MAP is that the resolution in axial direction remains about three to five times poorer because of the shape of the laser focal point. A novel technique called Resolution Augmentation through Photo-Induced Deactivation (RAPID) lithography has been developed to overcome this issue. With RAPID, resolution of 40 nm in axial direction has been achieved. The aspect ratio of the volume element of MAP has been reduced from about 3 to 0.5. Selective functionalization of polymeric microstructure has been performed in two ways. In the first approach, microstructures are fabricated with hybrid resists that permits the chemical functionality only applies to one material. The second method is able to pattern both binary and gray-scale functionalities onto polymer surface. The density of the surface functional groups is determined by the intensity of the exposed light. The nonlinear novelty of multiphoton absorption has not only been realized in MAP, it also shows promise for multiphoton absorption based microscopy. Photoluminescence from noble metal nanostructures has been used for two-photon imaging of living cells. Multiphoton Absorption Induced Luminescence (MAIL) has been used to monitor the targeting and endocytosis of goldnanoparticles to human umbilical vein endothelial cells. Field-enhanced phenomena have been studied with MAIL and MAP.
    URI
    http://hdl.handle.net/1903/9550
    Collections
    • Chemistry & Biochemistry Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility