Arbitrary Steering of Multiple Particles Independently in an Electro-Osmotically Driven Microfluidic System

Thumbnail Image
Publication or External Link
Shapiro, Benjamin
Chaudhary, Satej
S.Chaudhary, B.Shapiro. Arbitrary Steering of Multiple Particles Independantly in an Electroosmotically Driven Microfluidic System. IEEE Transactions on Control Systems Technology, vol 14, issue 4, pg 669-680, July 2006.
We demonstrate how to use feedback control of microflows to steer multiple particles independently in planar microfluidic systems driven by electro-osmotic actuation. This technique enables the handling of biological materials, such as cells, bacteria, DNA, and drug packets, in a hand-held format using simple and easy-to-fabricate actuators. The feedback loop consists of a vision system which identifies the positions of the particles in real-time, a control algorithm that computes the actuator (electrode) inputs based on information received from the vision system, and a set of electrodes (actuators) that create the required flow through electro-osmotic forces to steer all the particles along their desired trajectories and correct for particle position errors and thermal noise. Here, we focus on the development of control algorithms to achieve the steering of particles: vision system implementation, fabrication of devices, and experimental validation is addressed in other publications. In particular, steering of a single (yeast cell) particle has been demonstrated experimentally in our prior research and we have recently demonstrated experimental steering of three particles independently. In this paper, we develop the control algorithms for steering multiple particles independently and we validate our control techniques using simulations with realistic sources of initial position errors and thermal noise. In this study, we assume perfect measurement and actuation.