Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Aerospace Engineering
    • Aerospace Engineering Research Works
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Aerospace Engineering
    • Aerospace Engineering Research Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analyzing Mistuning of Bladed Disks by Symmetry and Reduced-Order Areodynamic Modeling

    Thumbnail
    View/Open
    ShapiroWillcox_AnalyzeMistuningBySymAndROM_JPP_Mar03.pdf (349.6Kb)
    No. of downloads: 980

    Date
    2003-03
    Author
    Shapiro, Benjamin
    Citation
    Shapiro, B. and K. Willcox. Analyzing Mistuning of Bladed Disks by Symmetry and Reduced-Order Areodynamic Modeling. Journal of Propulsion and Power, vol19, no2, pg307-311, March-April 2003.
    Advisor
    Willcox, Karen
    Metadata
    Show full item record
    Abstract
    The mistuned behavior of bladed disks is analyzed and optimized using an unsteady, transonic, computational fluid dynamic model (CFD). This result is enabled by the integration of two frameworks: the first is based on symmetry arguments and an eigenvalue/vector perturbation scheme, while the second is a reduction technique based on the proper orthogonal decomposition (POD). The first framework reduces the complexity of the problem, reveals engineering trade offs and suggests the existence of an intentional robust mistuning which improves both stability and forced response with respect to random variations in blade parameters. The second framework permits the reduction of state-of-the-art computational fluid dynamic codes to reduced-order models, which capture the accuracy of the original simulation but fit within the mistuning analysis framework. Together, these methodologies allow the analysis of a transonic, bladed disk with stiffness mistuning (see Fig. 1).Moreover, because of the low order of the aeroelasticmodel, a robust control¹ uncertainty analysis can be used to prove that the intentional mistuning suggested by the symmetry analysis framework is indeed robust. Hence this paper contains the first rigorous demonstration that intentional mistuning can robustly improve both the stability and forced response for a model that includes sophisticated aerodynamic effects.
    URI
    http://hdl.handle.net/1903/9425
    Collections
    • Aerospace Engineering Research Works

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility