Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On-Demand Broadcast Scheduling

    Thumbnail
    View/Open
    CS-TR-3859.ps (442.8Kb)
    No. of downloads: 355

    Auto-generated copy of CS-TR-3859.ps (320.4Kb)
    No. of downloads: 791

    Date
    1999-10-09
    Author
    Aksoy, Demet
    Franklin, Michael
    Metadata
    Show full item record
    Abstract
    Broadcast is becoming an increasingly attractive data dissemination method for large client populations. In order to effectively utilize a broadcast medium for such a service, it is necessary to have efficient, on-line scheduling algorithms that can balance individual and overall performance, and can scale in terms of data set sizes, client populations, and broadcast bandwidth. We propose an algorithm, called RxW, that provides good performance across all of these criteria and that can be tuned to trade off average and worst case waiting time. Unlike previous work on low overhead scheduling, the algorithm does not use estimates of the access probabilities of items, but rather, it makes scheduling decisions based on the current queue state, allowing it to easily adapt to changes in the intensity and distribution of the workload. We demonstrate the performance advantages of the algorithm under a range of scenarios using a simulation model and present analytical results that describe the intrinsic behavior of the algorithm. (Also cross-referenced as UMIACS-TR-98-88)
    URI
    http://hdl.handle.net/1903/932
    Collections
    • Technical Reports from UMIACS
    • Technical Reports of the Computer Science Department

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility