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Abstract

Broadcast is becoming an increasingly attractive data dissemination method for large client populations. In
order to effectively utilize a broadcast medium for such a service, it is necessary to have efficient, on-line scheduling
algorithms that can balance individual and overall performance, and can scale in terms of data set sizes, client
populations, and broadcast bandwidth. We propose an algorithm, called RxW, that provides good performance
across all of these criteria and that can be tuned to trade off average and worst case waiting time. Unlike previous
work on low overhead scheduling, the algorithm does not use estimates of the access probabilities of items, but rather,
it makes scheduling decisions based on the current queue state, allowing it to easily adapt to changes in the intensity
and distribution of the workload. We demonstrate the performance advantages of the algorithm under a range of
scenarios using a simulation model and present analytical results that describe the intrinsic behavior of the algorithm.

1 Introduction

Advances in telecommunications, internetworking, and mobile computing have enabled the development of large-scale
data dissemination applications, in which information i1s provided to vast numbers of users distributed around the
world. Examples of such applications include election result servers, sporting event kiosks, news providers, and software
distribution, to name a few. The World Wide Web has provided a universal platform for developing dissemination-
based applications, but all too frequently these web-based systems fail to meet the high user demands placed on them,
particularly under peak loads. The result is unacceptably slow response times and poor availability. As the scale of such
systems in terms of the number of users and the amount of information continues to grow, these problems have become
even more critical.

Technology improvements in delivery mechanisms such as direct broadcast satellite, cable, cellular and even traditional
telephone networks are providing high bandwidth delivery channels to homes, offices, and mobile users. The increasing
availability of high bandwidth links, however, is only a partial solution to these scalability problems, as improved
communications bandwidth does not ease the burden on overloaded servers.

For dissemination-based applications, where there is often a significant degree of commonality among the interests of
the users, unicast data delivery as used by current Web servers is wasteful of resources. With unicast, a data item must
be transmitted for each client that requests it, so the load on the server and the network increases with every client.
In contrast, data broadcast can satisfy the needs of potentially many clients using a single transmission. Broadcasting,
therefore, has the potential to solve the server scalability problems that arise with large-scale data dissemination.
Furthermore, the emerging infrastructure for providing large-scale data delivery is in many cases organized in a way
that supports broadcast. For example, satellite and cable technologies provide high, shared bandwidth from servers
to clients, while providing much less bandwidth in the opposite direction. Such an arrangement lends itself well to
broadcasting. For these reasons, there is increasing commercial and research interest in data broadcasting.

A key consideration in the design of an on-demand broadcast system is the algorithm used to schedule the broadcast
in response to the requests received from clients. The challenge is to devise a scheduling algorithm that provides
good average and worst case performance, scales well (in terms of increasing request arrival rates, database sizes, and
bandwidth), and is robust in the presence of typical environmental changes. Previous studies of broadcast scheduling
algorithms (e.g., [DAW86, Won88, VH96, ST97]) have failed to address one or more of these issues. Some approaches
have used simple scheduling policies such as FCFS (First Come First Served), which provide average case performance
that is significantly lower than what could be supported by the broadcast medium. More sophisticated approaches have
been based on assumptions that limit their applicability, such as assuming very small database sizes, static data access
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probabilities (thereby limiting the ability to adapt to changing client needs), and/or ignoring the overheads associated
with making scheduling decisions.

This paper makes three main contributions. First, we explicitly identify the performance and scalability criteria that
must be met by scheduling algorithms for large-scale on-demand broadcast environments, and describe how previous
algorithms fail to meet one or more of them. Second, we develop a parameterized scheduling algorithm, called Rz W,
that performs well along all of these criteria and can be tuned to focus on the needs of a particular application or system.
Rz W is robust to changes in the client population and workload because it makes scheduling decisions based on the
current request queue state rather than depending on estimates of data item access probabilities. Third, we present an
analytical study along with detailed simulation results and sensitivity analyses to back up these claims.

Our work is focused on systems that disseminate relatively small (i.e., tens of KBytes), distinct objects such as web
pages or database pages. A motivating example of such a system is a broadcast-based web proxy server where clients are
Internet browsers (or other proxy servers) that request web pages. Such a system could conceivably be used by millions
of clients and could provide access to millions of data items, and therefore, the issues of performance, scalability, and
robustness are paramount. It is important to note that our work does not currently address broadcast scheduling for
large, continuous objects such as videos [DSS94, AWY96].

The remainder of the paper is structured as follows. In Section 2 we give a brief description of the problem and define
the important criteria for evaluating scheduling algorithms for large-scale broadcast. We then describe how previously
proposed algorithms measure up to these criteria. In Section 3 we describe the RzW scheduling algorithm and its
approximation. In Section 4 we present an analytical treatment of the algorithm. Section b presents an evaluation of the
various approximation settings in terms of their performance, scalability, and robustness to workload changes. Section 6
discusses related work. Finally, Section 7 presents our conclusions.

2 Background

2.1 Environment and Assumptions

We begin by presenting a simple satellite-based broadcast scenario to motivate the scheduling problem being addressed.
In this scenario (depicted in Figure 1) there is a single server and a large population of clients. Two independent
networks are used: a terrestrial network over which clients send requests to the server, and a satellite downlink over
which the server broadcasts data to the clients. Such an arrangement is similar to Hughes Network System’s DirecPC
architecture [DP96] and other satellite data services.

When a client needs a data item (e.g., a web page or database object) that it cannot find locally, it sends a request
for the item to the server. Client requests are queued up at the server upon arrival. The server repeatedly chooses an
item from among these requests, broadcasts it over the satellite link, and removes the associated request(s) from the
queue. Clients monitor the broadcast to receive the requested data.
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Figure 1: Example Data Broadcasting Scenario

Similar to previous work on broadcast scheduling [DAW86, Won88, ST97, VHI6] we make several assumptions about
the environment: We assume that there is a single broadcast channel that is monitored by all clients and that the channel
is fully dedicated to the data broadcast (i.e., the data server can use the entire bandwidth). Clients continuously monitor
the broadcast after they make a request and we do not consider the effects of transmission errors, so that all clients that
are waiting for an item receive that item when it is broadcast. We ignore the uplink delay which we expect to be small



and we focus on the case where the data items are fixed-length pages, such as database or memory pages. The use of
fixed-length pages simplifies the algorithm descriptions and analysis; Recent work in broadcast scheduling has shown
how to extend scheduling algorithms to incorporate variable-length items [VH96, ST97].

Each page is broadcast in a single burst; The time 1t takes to broadcast a page is referred to as a broadcast tick, and
we use such ticks as a unit of performance measurement. The use of ticks emphasizes that our results apply to systems
of many different scales. For example, in a system with 16 KB pages and 1 Mb/sec downstream bandwidth a broadcast
tick would be approximately 0.13 seconds, while if the bandwidth was 100 Mb/sec a tick would be 1.3 milliseconds.
Regardless of these absolute values, if algorithm A is shown to be 50% faster than algorithm B in terms of ticks, then as
long as both algorithms are sufficiently fast to allow full utilization of the broadcast bandwidth, the same relationship
will hold in terms of absolute time as well.

2.2 Performance Issues

Given the application environment described in the preceding section, we can now state our criteria for evaluating
scheduling algorithms for large-scale on-demand data broadcast. We divide the criteria into three groups: responsiveness,
scalability, and robustness.

2.2.1 Responsiveness

The success of a scheduling algorithm is ultimately determined by its ability to get requested data to the clients quickly.
There are two metrics of importance in this regard. First, we define average wait time as the amount of time on average
from the instant that a client request arrives at the server, to the time that the item is broadcast. Previous work on
broadcast scheduling has focused almost exclusively on such average performance. For interactive systems, however, it
is also important to ensure that the scheduling algorithm does not induce starvation of requests for unpopular items.
Thus, we also measure the worst case wait time, which is the maximum amount of time that a client request waits in
the service queue before being satisfied.

There are two factors that determine the responsiveness of a scheduling algorithm. The first is the quality of the
schedule produced. Tt has previously been shown that the optimal allocation of broadcast bandwidth for fixed-length
data items should be in proportion to the square roots of their probability of access [AW8T7]. A good scheduler should
therefore approach such an allocation. The second factor, however, is the decision overhead, that is, the cost of making
a scheduling decision. In order to make full use of the broadcast bandwidth, the time required to make a scheduling
decision must be less than the length of a broadcast tick. A scheduler that makes decisions more slowly will stall the
broadcast, resulting in unused bandwidth, thereby wasting a critical shared resource.

Most previous work in on-demand scheduling has focused on schedule quality, making the implicit assumption that all
of the algorithms had sufficiently low overhead. The point at which such overhead begins to hurt overall performance is
highly situation-dependent, being impacted by among other things, the ratios among broadcast bandwidth, data item
size, server processor speed, and database size. Thus, in this paper, we follow the approach of ignoring overhead when
reporting response times, but also provide measurements of the overheads incurred by the various scheduling approaches
under various scenarios.

2.2.2 Scalability

While responsiveness is a primary consideration for algorithms, it 1s also crucial that good performance be provided over
a wide range of environments. Previous work in broadcast scheduling has emphasized responsiveness without focusing
on scalability. In particular, it is necessary for the algorithm to perform well as the problem grows in several dimensions:

Request Arrival Rates - When a new request arrives at the server, the server must decide whether or not to place
and/or update an entry in the service queue for the requested item. The speed of such processing limits the rate at
which requests can be processed by the server. Since a high-bandwidth broadcast channel is utilized most effectively
when there are a large number of clients, the system must be able to handle heavy request traffic.

Database Size - Because a single broadcast of an item satisfies all outstanding requests for that item, the size of the
request queue managed by the server is typically proportional to the number of items with outstanding requests rather
than the number of individual requests. Thus, for some algorithms, the scheduling overhead is related to the number
of items that can be requested by clients. As the amount of data that is available for dissemination increases, it is
important that the scheduling algorithm overhead remains reasonable.

Broadcast Rate - Broadcast technologies are continually being improved to provide higher bandwidth. As the band-
width is increased, the amount of time allowed to make a scheduling decision is decreased. Thus, the scheduler must
have low overhead in order to avoid becoming a bottleneck.



2.2.3 Robustness

In order to achieve the goals of responsiveness and scalability, scheduling algorithms typically employ approximations
and/or heuristics. Such techniques must not cause the algorithm to perform poorly if the workload or the environment
changes either abruptly or gradually. In this study, we examine the robustness of scheduling algorithms to changes in
access patterns and request arrival rates.

2.3 Previous Algorithms

As stated in the Introduction, several algorithms for on-demand broadcast scheduling have been proposed previously. In
this section, we describe existing algorithms and discuss their limitations with respect to the criteria that were outlined
in the preceding section. Dykeman et al. [DAWS86] studied on-line scheduling algorithms, and were the first to point
out that traditional FCFS scheduling would provide poor average wait time for a broadcast environment when the
access distribution for data items was non-uniform. They proposed several algorithms aimed at providing improved
performance. The algorithms studied in [DAWS86] (and later in [Won88]) are the following:

¢ First Come First Served (FCFS): broadcasts the pages in the order they are requested. To avoid redundant
broadcasts, requests for pages that already have entries in the queue are ignored.

¢ Most Requests First (MRF): broadcasts the page with the maximum number of pending requests.

¢ Most Requests First Lowest (MRFL): Similar to MRF, but breaks ties in favor of the page with the lowest
access probability.

¢ Longest Wait First (LWF): selects the page that has the largest total waiting time, i.e.; the sum of the time
that all pending requests for the item have been waiting.

In Figure 2 we show the average waiting time (in broadcast ticks) for a workload with a database of 10000 pages.
Client requests for pages are generated using a highly-skewed Zipf distribution (with é=1). The request inter-arrival
time is determined by an exponential distribution, the mean of which is varied along the x-axis (expressed in requests
per broadcast tick). The results were generated using the simulation environment that is described in Section 5. As
in [DAWS&6], the overheads associated with running the scheduling algorithm at the server are not modeled here.
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Figure 2: Average Wait Time for Algorithms of Dykeman et al.

As can be seen in the figure, the best performance overall in this case is provided by LWF. As would be expected
the average wait time increases for all algorithms as more requests are introduced, but perhaps less predictably, the
average response time eventually levels off and becomes insensitive to additional load. At this point, the remaining
algorithms are approximately 2.5 times slower than LWF. Unfortunately, a straightforward implementation of LWF is
not practical for a large system, as at each broadcast tick, it would recalculate the total accumulated wait time for every
page with pending requests in order to decide which page to broadcast next. For a high-bandwidth system with a large
database, such a scheduling algorithm would likely to become a bottleneck.! In contrast, the other algorithms examined
by Dykeman et al. lend themselves easily to lower overhead implementations.

The results of Figure 2 agree with those of [DAWS86, Won88] except for two key points. First, the earlier work did
not investigate the performance of the algorithms under very high loads, so it did not identify the flattening of the

n our implementation of LWF, we found that using one processor of a DEC Alpha 2100 4/275 server and assuming a broadcast bandwidth
of 155 Mbps, the LWF scheduling decision time became a bottleneck with a database size of 5543 8KByte pages.



performance for all of the algorithms under high load. This behavior is a key property for broadcast based servers,
and 1s explained in Section 4. Second, the performance of MRFL in the earlier study was seen to provide performance
between that of FCFS and LWF, whereas in our experiments it was seen to perform worse than FCFS. The difference in
these results stems from the fact that the earlier study was performed using a very small database (100 items, compared
to 10000 in Figure 2). As the size of the database increases, the probability of having a tie for the largest number of
requests diminishes. Without ties, MRFL degenerates to MRF.

The performance of MRFL for large systems has also been shown by Su and Tassiulas [ST97]. They proposed an
alternative algorithm, called PIP-0.5 (Priority Index Policy), that performs as well as LWF in terms of average wait
time. Unlike LWF, PIP-0.5 can be implemented to run with O(1) complexity, by carefully organizing the service queue
and slightly increasing the work that must be done when a request arrives at the server. Even with this optimization,
however, PIP-0.5 falls short of our performance criteria, because it is based on estimates of the probability of access
for each item. As a result, 1ts usefulness is limited to fairly stable environments where those probabilities do not often
change significantly. Furthermore, the history mechanism that must be employed to obtain such probability estimates
can result in additional overhead, particularly for very large data sets. Algorithms based on access probabilities and
broadcast histories have also been proposed by Vaidya and Hameed [VH96]. These algorithms have similar performance
to the PIP-0.5 algorithm, and also share that algorithm’s limitations in terms of robustness to changing workloads.

3 RaW: A Parameterized Algorithm

We have developed a new broadcast scheduling algorithm, called RzW, which 1s a practical, low-overhead, scalable
approach that provides excellent performance across a range of scenarios. We begin the presentation of the algorithm
by describing the intuition behind it. We then describe three forms of the algorithm: 1) an exhaustive search-based
approach that finds the page with the maximal Rz value; 2) a lower-overhead implementation, that prunes the search
space, but also finds the maximal RzW-valued page; and 3) an approximate version that can be adjusted to tradeoff
scalability, average case, and worst case waiting time.

3.1 Intuition

The results described in Section 2.3 demonstrated that the low overhead algorithms investigated by Dykeman et al.,
have poor average case performance compared to the higher-overhead LWF algorithm. As described in [AF98], further
analysis showed that MRF provides the lowest waiting time for hot pages, but its performance for cold pages is by far
the worst. MRF chooses the page with the highest number of outstanding requests, so that requests for infrequently
accessed pages must wait until sufficient requests have arrived. In fact, MRF is not a starvation-free algorithm; it is
quite possible that a request for a very cold page is never satisfied. In contrast, FCFS is a fair algorithm spending
more bandwidth for cold pages than all others do. The fact that both algorithms favor one class of pages over the other
results in them both having poor performance on average. In contrast, LWF provides good performance for both types
of pages, resulting in better average performance overall.

3.2 The Exhaustive RaW Algorithm

Based on the above observations we developed the RzW algorithm, which combines the benefits of MRF and FCFS
in order to provide good performance for both hot and cold pages, while ensuring scalability by having low overhead.
Intuitively, ReW broadcasts a page either because it is very popular or because it has at least one long-outstanding
request. At each scheduling decision the RxW algorithm chooses to broadcast the page with the maximal R x W value
where R is the number of outstanding requests for that page and W is the time that the oldest outstanding request for
that page has been waiting. In this section, we introduce an exhaustive version of the algorithm, which has scheduling
overhead similar to that of LWF; in the subsequent sections we describe the techniques we use to reduce this overhead.

The exhaustive RzW algorithm is an O(N) algorithm that has overhead similar to LWF. It maintains a structure
containing a single entry for each page that has outstanding requests. FEntries contain the page identifier (PID), the
count of the number of outstanding requests (R), and the arrival time of the oldest outstanding request (1stARV) for
the item. In the algorithm, times are represented in broadcast ticks, rather than in wall-clock time. The W value of a
page can be computed as W = clock—IstARV where clock is the current time. The structure is hashed on PID. The
algorithm works as follows:

When a request arrives at the server — a hash lookup is performed on the PID of the the requested page. If an entry
already exists, then the R value of that entry is simply incremented. If no entry is found (i.e., there are currently no
outstanding requests for the page), then a new entry is created with R initialized to 1, and 7stARV initialized to the
current time in broadcast ticks (i.e., the number of items broadcast so far).



For each broadcast decision — each entry in the request structure is examined and the page with the largest (R * W)
value is chosen to be broadcast. The entry for this page i1s then removed from the service queue.

3.3 Pruning the Search Space

The search overhead of RzWW can be reduced by performing more work at request arrival time to keep the request
information better organized. We have developed a pruning version of the exhaustive RxW algorithm that reduces the
number of entries that must be examined in order to find the maximal RxW-valued page. This algorithm uses two
sorted lists that are threaded through the request structure: 1) the W-List, ordered by increasing 1stARV value, similar
to the queue maintained by FCFS; and 2) the R-List, which is ordered by descending R value. As shown in Figure 3,
these two lists are maintained as doubly-linked lists that are threaded through the request structure.

next in W-List

next in R-List

prev in W-List prev in R-List
PID 1S‘Arv—‘ R
T b [ 10 [[[ 1 [[] _
n 20 1
)4 50 2 -
—a [ 90 [[[ 40 []]
— [ k [ 95 [[[ 25 []
A f | 98 [[[ 80 [[]
[ z [ 99 [[[ 20 []]

Service Queue

Figure 3: The RxW Service Queue Data Structures

The W-List has very low maintenance overhead, as once an entry is added to the list, it is not moved until the
corresponding page is broadcast, regardless of how many requests arrive for that page. The R-List, however, is much
more dynamic. Every time a request arrives for a page, its entry must be moved in the R-List. Thus, an additional
structure, called the R-Index is used to facilitate R-List maintenance. The R-Indez has an entry for each distinct R
value, with a pointer to the first entry in the R-List that has that value. When a request arrives for an item that already
has an entry, the R-Index is used to quickly locate the place in the R-List to where the entry must be moved after its
R value is incremented. The R-Index makes request processing a constant time operation, thereby removing a potential
bottleneck to handling large request arrival rates.

When an item is broadcast, its entry is removed from the service queue and the W-List and R-List are patched using
the doubly-linked lists. Furthermore, if the entry removed was the first with its particular R value, then the R-Indez is
updated to point to the next entry with that value, if any.

The pruning technique starts by examining the entry at the top of the R-List and setting M AX, the maximum R x W
value seen so far, to the R x W value of that entry. The W values of interest can then be restricted using R’, the R
value of the next entry in the R-List. Since the R-list is sorted in descending order, 1t is known that for any unexamined
entry to have an R x W value greater than M AX | it must have a W value satisfying the equation

MAX
R/
Thus, a limit can be placed on IstARV. Namely, it must be less than:

W >

MAX
R/

limit(1stARV) = clock —

Since the W-List is sorted in ascending order, this limit effectively truncates the W-List. That is, it defines a point in
the W-List below which 1t 1s known that no entry can exceed the current maximal RzW value.

Next, the entry at the top of the W-List is examined and a limit(R) is calculated in the analogous way. The algorithm
then keeps on alternating between the two lists, updating M AX when an entry with an R x W value greater than M AX
is encountered, and incrementing the limits if possible. The algorithm stops when the limit is passed on one of the
lists or when all the entries have been examined half way through both lists. At this point, M AX is known to be the
maximal B x W value for all pages so the page with that value is chosen for broadcast.

An example of the pruning technique is shown in Figure 4. In the example, the R-List and W-List are shown as two
separate lists (for ease of explanation) and the current clock value is 100 ticks. The limits shown are those that would
be computed after the top of each list has been examined. First the entry for page f (the top of the R-List) is examined
resulting in M AX being set to 160 and limit(1stARV) being set to 96. Next, the entry for page b (the top of the
W-List) is checked. RzW of b is less than M AX (90 vs 160) so M AX is left unchanged, but lémét(R) is set to 2. The
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Figure 4: Pruning the Search Space

algorithm then checks page a, which has an RzW value of 400, and so M AX is updated to 400, and limit(1stARV) is
set to 84. The algorithm continues searching until page y is examined, at which point the limit on the W-List is reached
and the algorithm stops. In this example, page a has the highest RxzW value, so it is chosen to be broadcast.

In the analysis and performance study that follows, we will use the term “RzWW algorithm” to refer to this pruning
variant unless explicitly stated otherwise.

3.4 Approximating RxW

The pruning technique described in the previous section is indeed effective in reducing the search space. For example,
for our Zipf-based workload, it results in a 73% reduction in entries examined as will be discussed in Section 5.3.3.
While such a substantial savings is helpful, it is not always sufficient to keep the scheduling overhead from ultimately
becoming a limiting factor as the system is scaled to the large-scale applications that will be enabled by the national
and global broadcasting systems being deployed.

Based on insight gained from early experiments with the RxW algorithm, we realized that the scheduling overhead
can be reduced dramatically by backing off from the requirement of maximality for the RzW value. Building on specific
behaviors observed for RzW , we have developed an approzimate, parameterized variant of RxW that allows the search
space to be reduced further, at the possible expense of making suboptimal broadcast decisions. By varying a single
parameter, the algorithm can be tuned from having the same behavior as the RxW algorithm described so far, to being
a constant time approach.

The parameterized version of RzW is based on two insights about RzW scheduling. First, we found that with highly
skewed access patterns (as would be expected in many dissemination-oriented applications), the page with the maximum
RxW value is typically found very near the top of at least one of the two lists R-List or W-List. This behavior is due
to the large differences between the top and bottom values in the sorted lists that arises in workloads of high and
non-uniform request rates on very large databases. As a result, even the pruning-based RxW algorithm can spend
substantial resources examining entries after it has already encountered the maximum-valued entry. The second insight
is that given a static workload (i.e., in terms of request arrival rate and access probability distribution) the average
RxW value of the page chosen for broadcast typically converges to some value. This latter insight is exploited to create
a self-adapting approximation algorithm based on the RxW value of the most recently broadcast page. We take care,
however, to ensure that the approximation works well even in the presence of a changing workload.

The algorithm maintains a self-adapting threshold, which is updated on every broadcast tick by averaging the current
threshold value with the RxW value of the page that was chosen to be broadcast on that tick. The threshold is initially
set to 1 and then on each broadcast tick is recomputed as

threshold(t) 4+ last ReW (t)
2

threshold(t + 1) =

where lastRzW(t) is the R x W value of the page that was broadcast at tick ¢. The approximation algorithm requires
a single parameter called «, which can be set to any value 0 or greater.? To find the next page to broadcast the
request structure is searched as in the regular (pruning) RzW algorithm, but rather than searching for the page with
the mazimal ReW value, the algorithm chooses the first page it encounters whose RxW value that is greater than or
equal to @ x threshold. If no such page is found, then the algorithm acts like the regular RzW algorithm and returns
the page with the maximum RxW value.

The setting of the a parameter determines the performance tradeoffs between average waiting time, worst case waiting
time, and scheduling overhead. The smaller the value of the parameter, the fewer entries are likely to be scanned. At
an extreme value of 0, the algorithm simply compares the top entry from both the R-List and the W-List and chooses

2Typically the o parameter will be set to a value between 0 and 1. Larger values can also be used. In the limit, setting o to co would
result in behavior identical to that of the regular ReW algorithm.



the one with the highest Rz value. In this case, the complexity of making a scheduling decision is reduced to O(1),
ensuring that broadcast scheduling will not become a bottleneck regardless of the broadcast bandwidth, database size,
or workload intensity.

In Section 5, we examine the performance tradeoffs of several settings of the o parameter. First however, we present
an analytical treatment of the RzW algorithm that identifies several intrinsic properties of the schedules 1t produces.

4 Upper Limit on Average Waiting Time

In Section 2.3 we observed that for all of the algorithms, as the request arrival rate is increased, the average waiting time
eventually levels out at an algorithm dependent limit. This behavior is in contrast to unicast where the average waiting
time in such a case would grow asymptotically. In this section we show that broadcasting is inherently scalable in terms
of increased request arrival rates (the practical impact of client population growth) by analyzing the expected waiting
time when the RxW algorithm is employed. These results also analytically show that RzW produces higher-quality
schedules than MRF.

4.1 RxW as a Time-Dependent Priority Queue

The expected waiting time for a specific page when RxzW is employed can be determined through the use of a priority
queuing model [Kle76]. In Section 3.2 we explained how the service queue is implemented using a single entry for each
unique page of the database with outstanding requests. Here we map each of those request queue entries to a logical
request whose priority at a given time is equal to the R x W value of the entry at that time. In other words, we treat
all individual (client) requests made on a specific page as a single logical request that will be serviced and removed from
the queue when the requested page is broadcast. In the rest of the section, we refer to the queue entry that represents
all individual requests currently outstanding for page i as a logical page-i entry.
Assuming Poisson arrivals, the priority (R x W value) of a page-i entry is a function of time, denoted by RaxW;(¢):

RaWi(t) = Api(t — t;)? (1)
where X is the client request arrival rate, p; is the probability that a request is for page i, and ¢; i1s the arrival time of
the request that caused the page-i entry to be created. Equation 1 is a trivial formulation since the expected number of
individual request arrivals for page ¢ in the time interval [¢ - ¢;] is Ap; (¢ — ¢;). We simply multiply the expected number
of requests by (¢ —t;), the waiting time of the request that caused the creation of the entry.

— page-b entry — page-aentry
— page-c entry = page-b entry
time time
[ 0 tq W,
(a) Request entries already in queue (b) Request entries created after page-b entry

Figure 5: Conditions to be serviced before page-b entry

In this time-dependent priority queuing model, we consider a specific queue entry, page-b, and examine its waiting
time behavior relative to other entries. The waiting time of a page-b entry, W3, depends on the number of entries that
will be serviced before the page-b entry, which is essentially equal to the number of pages that will be broadcast before
page b, such that:

Wy = Wo + pLy + pM,y (2)

where W, is the mandatory wait for the completion of an already initiated page broadcast, y is the service time, (i.e.,
one broadcast tick), ILj is the expected number of pages that will be broadcast before page b for which entries were
already in the service queue when the page-b entry was created, and Mj 1s the expected number of pages that will be
broadcast before page b even though their initial request arrives after the page-b request was created. In the following
paragraphs we derive the expected values of L; and M; and then combine the results in Section 4.2.

First, we calculate Lj, the number of pre-existing queue entries that will be serviced before the page-b entry. For
Poisson arrivals, all pre-existing entries for more popular pages will typically be serviced before the page-b entry. An



entry for a less popular page, on the other hand, can compete with the page-b entry only if it was created early enough
before the creation of the page-b entry. For example, Figure 5(a) shows the evolution of the priorities of two queue
entries over time. The origin of the graph is the time at which the page-b entry is created. Time prior to the creation of
the page-b entry 1s shown on the negative x-axis. The priority values are plotted as a continuous function of time and
the discrete R x W values are shown with bars drawn at each broadcast tick. In Figure 5(a), page ¢ is less popular
than page b and thus, it can accumulate a higher priority before time W3 only if its initial queuing time is before ¢.. We
can find the value of ¢, using the equation:

Qe(Wy) = Qs (Wh) (3)
Ape(Wh +1.)* = App(Wh)® (4)

The expected number entries included in Lj for less popular pages is calculated by solving Equation 4. The total can

be expressed as:
N-1
=3 La (5)
i=0

or

where N 1s the number of pages in the database, and:

AW /5—; if i is less popular than b

, (6)
AW otherwise

where A; is the rate at which a page-i entry is created, W; 1s the expected waiting time for a page-i entry and p; is the
access probability of page i. For the derivation of Equation 6 see Appendix I.

We next calculate My, the expected number of page-i entries that will be serviced before the page-b entry even though
they are created after the page-b entry is created. In this case, only entries for pages more popular than b can compete
for service. For example, as shown in Figure 5(b), a page-a entry (such that page a is more popular than page b), can
reach the priority level of the page-b entry before time W; only if it is created before ¢,. We can calculate the value of
t, using:

Qa(Wy) = Qu(W3) (7)
Apa(Wh — ta)* = App(W3)? (8)

When we solve the equation for ¢, the expected number of entries that will be serviced before the page-b entry even
though they are created afterwards is:
N-1
My =" My (9)
i=0

’ AWR(1 = /B)  if i is more popular than b
— \ pi

otherwise

or

where

My =
The derivation of Equation 10 is given in Appendix II.

4.2 The Limiting Behavior of Waiting Time

In this section, we combine Equations 5 and 9 to derive the expected waiting time of the page-b entry. Assuming that
all pages are ordered by decreasing popularity, such that page 0 is the hottest page and page N-1 is the coldest, the
expected waiting time for a page-b entry is:

b—1

Wy = Wo + u(Y_ AW + ZAWﬁ

i=0 i=b+1

WY A - g»

where A;, the rate at which page-i entries are created, is

1

Aj= —— 11
Wi + 557 ()

The creation of a new page-i entry is only possible after the broadcast of page i. Therefore, the expected time between
two successive page-i creations is the sum of the expected time a page-i entry spends in the queue and the time until the



next request for page i that results in the creation of a new page-i entry (i.e., after the previous page-i entry is serviced).
Note that A; is bound to WL for large values of A. The expected waiting time of a page-b entry, therefore, is equal to:

W—i—Zz b+1pl W—i—Zz OPZ

Dy opzu—ﬁ]

where p; is the utilization of the bandwidth by page ¢ broadcasts, which is equal to puA; and bounded by - for heavy
request rates.

There are two observations that follow this analysis. First, for heavy request traffic, the expected value of waiting
time is independent of request arrival rates. This explains the inherent scalability in terms of request arrival rates. The
only factor that determines the average waiting time is the relative popularity of pages in the simple form of square root
ratios. In general, the leveling off behavior of average waiting time is independent of the scheduling algorithm used as
we have already observed in Figure 2. An intuitive explanation of this phenomenon is that for heavy request rates, an
increase in the number of requests implies a similar increase in the number of requests that can be satisfied by a single
broadcast of an item. This increase in the service rate balances that of the request arrival rate.

The second observation is that the dependency on access probabilities in Equation 12 1s in the form of a ratio of square
roots. Tt has previously been shown that the optimal bandwidth allocation for push-based broadcast (i.e., broadcast
without explicit requests) is by the ratio of square root of page access probabilities [AWS87]. Thus, we expect the RaW
algorithm to have good performance in terms of overall responsiveness. It is important to note, however, that Rz
uses the current queue state for making scheduling decisions, rather than depending on estimates of access probability.
Thus, the ReW algorithm can be robust to changes in the workload.

In Appendix III we apply a similar analysis to MRF. The expected waiting time formulation derived there is struc-
turally similar to Equation 12. The only difference is that the equation for MRF scheduling has a plain ratio between
the probabilities p; and pp, while RzW has a square root-based ratio as shown in Equation 12. This implies that
MRF favors hot pages more than it needs to and therefore can not exploit the benefits of broadcast bandwidth to its
maximum benefit. As a result, we are able to analytically describe the reason behind MRF’s poor performance: namely,
over-emphasizing hot pages.

Wy =

(12)

5 Experimental Results

In this section we describe the results of our simulation study comparing the maximal and approximate versions of
RxW and the LWF and FCFS algorithms along the dimensions of performance, scalability, and robustness outlined in
Section 2.2. First, however, we provide and overview of the simulator and the methodology used for the experiments.

5.1 Simulation Environment

Our experiments were performed using a simulation model written in CSIM [Sch86]. The simulation model represents an
environment similar to that described in Section 2, but is simplified in several ways. The broadcast channel i1s modeled as
a server with a fixed rate of broadcast. We do not specify an absolute value for this rate, but rather, use broadcast ticks
as our (abstract) measure of time for all aspects of the simulation. As has been described previously, scheduling overhead
is not included in the responsiveness numbers (average and worst case wait times) presented here. This simplification is
equivalent to making the assumption that all of the algorithms are able to make scheduling decisions fast enough to keep
the broadcast bandwidth fully utilized. As a result, the responsiveness numbers presented for slower algorithms such
as LWF may be optimistic. In order to address the overhead issue, we provide detailed measurements of the average
number of entries searched per broadcast decision by the various algorithms under different workloads.

The broadcast channel is modeled as being error-free. That is, an item sent out on the broadcast is received by all
of the clients that are waiting for it at that time. In the model, the client population is represented by a single request
stream. We use an open system model since our work is aimed at supporting extremely large, highly dynamic client
populations, and such client populations can not be realistically modeled with a closed simulation system. We do not
model the costs of using the back-channel for sending requests to the server as these costs will be relatively small for
page requests.

The main parameters and settings for the workloads used in the experiments are shown in Table 1. The client
population model generates requests with exponential inter-arrival times with mean A. The request pattern is shaped
with a Zipf distribution [Knu81]. This is a frequently used distribution for non-uniform data access. It produces access
patterns that become increasingly skewed as its § parameter increases from 0 (uniform access probability) to 1 (highly
skewed). The requests are distributed over a database containing dbsize fixed-sized pages. Two additional parameters,

10



| Symbol | Description | Default | Range | Unit |

A Mean Req. Arrival Rate (Exponential) | 100 [1-1000] requests/tick

0 Request Pattern Skewness (Zipf) 1.0 [0.0-1.0] -

dbSize | Database Size 10000 | [100-50000] | pages

offset Shift in Interest 0 [0-5000] number of pages
interval | Period of Interest Change n/a [1-100000] | broadcast ticks

Table 1: Workload Parameters and Settings

called offset and interval, are used to simulate interest shifts of the client population and the frequency of such shifts,
respectively.

5.2 Experimental Methodology

For the results presented in the following sections, each data point was obtained over a run of at least 300,000 broadcast
ticks. To determine this value, we examined the execution of the various scheduling algorithms using the default
parameters and observed that the queue length (in terms of outstanding requests, not the one-per-page service queue
entries), and average waiting times stabilized typically after the first 50,000 broadcast ticks. For reporting worst case
waiting times we run the simulation longer, ensuring that every page in the database is broadcast multiple times (i.e.,
that starvation is not occurring).

Since we are using a non-blocking open system model, it is likely that at the end of a simulation run some unsatisfied
requests will remain in the queue. A seemingly important question i1s how to include these “orphaned” requests in the
performance results. One approach is to treat all such orphaned requests as satisfied at the time the simulation is ended.
An alternative is to remove those requests from consideration. We compared both approaches for our default parameter
settings and found that in both cases, the average wait time converged to the value predicted by Little’s law [Tri82]
based on the observed stable queue length, but that the approach of including orphans converged slightly faster. Thus,
we use the approach of considering the orphaned requests to be satisfied on the last tick of the simulation run when
calculating average waiting time.

5.3 Responsiveness and Scalability

We begin by examining the responsiveness of several variants of the RzW algorithm, and comparing them to the LWF
and FCFS algorithms of Dykeman et al. We report results for four variants of ReW: The maximal (pruning) RzW algo-
rithm, and the approximate algorithm with « values of 0.90, 0.80, and 0 (referred to as ReW .90, ReW .80, and RxW .0,
respectively). Recall that RzW.0 chooses between the top entries of the R-List and W-List, and thus, makes scheduling
decisions in constant time. We first examine the average and worst case waiting times in the absence of scheduling
overhead, and then explore the scheduling overheads of the various approaches in detail.

5.3.1 Average Waiting Time

Figure 6(a) shows the average waiting time for each of the scheduling algorithms as the mean request arrival rate is
varied from 1 per tick to 1000 per tick along the x-axis (shown with a log scale). All of the algorithms exhibit similar
characteristics here, with the average wait time increasing but ultimately leveling off as the request arrival rate is
increased. As discussed in Section 4, this leveling off is an intrinsic behavior for broadcast data delivery to clients with
shared interests.

In Figure 6, FCFS gives the highest average wait in the entire range as expected. FCFS broadcasts the pages
in the order requested, regardless of their popularity, resulting in poor overall bandwidth allocation. LWF and the
maximal ReW algorithm provide the best performance (RzW actually does slightly better for loads between 5 and
50 requests/tick). The good performance of ReW in this case demonstrates that the RzTV heuristic is a reasonable
substitute for the total waiting time (used by LWF). Recall that the good performance of RzW was predicted by
the analysis of RzW in Section 4, which showed how the RxW heuristic makes use of the square root of the access
probabilities for bandwidth allocation. For instance, the average waiting time of RxW is 1.98 times better than FCFS
at 10 requests/tick and 2.51 times better than FCFS at 1000 requests/tick. As the o parameter is decreased, the average
wait time gradually increases.

As we have explained in Section 3.4 as the approximation parameter is decreased we decrease the scheduling overhead
at a possible expense of suboptimal decisions. This expense 1s shown to be very reasonable in Figure 6 when compared
to the gain in terms of scheduling overhead as will be described in Section 5.3.3. In Figure 6, the approximate algorithm
with an « value of 0.90 remains less than 10% worse than the maximal algorithm over the entire range. Even the
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Figure 6: Waiting Time Measures

constant-time RxW.0 pays a limited penalty. The penalty when compared to RxWW is 25% at a request rate of 10
requests/tick, and 33% at 1000 requests/tick. For all approximations shown, the performance is still about a factor of
two better than that of FCFS. For instance, at 10 requests/tick FCFS records an average wait of 3190 ticks, which is
60% higher compared to RzW.0, and at 1000 requests/tick FCFS records an average of 4962 ticks, which is almost twice
compared RzW.0. Also note that RzW.0 draws the upperbound for the approximations.

5.3.2 Worst Case Waiting Time

Although worst case performance has mostly been ignored by previous studies; it is an important metric for many
applications. Figure 6(b) shows the worst case waiting time measured for the same experiment as Figure 6(a). That
is, we plot the longest wait measured for any request during the simulation run®. As can be seen in the figure, the
ordering of the algorithms for worst case behavior is reversed compared to the average case. FCFS has the lowest worst
case waiting time. With FCFS, once a page has been requested, it is guaranteed to be scheduled for broadcast before
any other page is broadcast twice. Thus, its worst case behavior is bounded by the number of pages (10,000 in this
case). In contrast, the LWF and RaW algorithms make no such guarantees — popular pages may be broadcast multiple
times while requests for less popular pages wait.

In Figure 6(b) we see that the highest worst case waiting times are recorded for LWF and RzW. As « is decreased, the
W-list begins to play a more important role in the scheduling process, and thus, the worst case waiting time decreases,
similar to FCFS. For & = 0, the worst-case waiting time is within 15% of that of FCFS. Comparing Figures 6(a) and (b),
it is apparent that the a parameter provides a flexible mechanism for trading-off worst case and average case waiting
times for a particular application environment and that it can also be set to balance both concerns reasonably well (e.g.,
a = 0.80 in this case). In the next section we show that « can also be used to adjust the overhead of the scheduling
decision process in order improve the scalability of a system.

An interesting feature of the worst case result is an unexpected peak in worst case wait which is especially visible
for LWF and maximal RzW. This peak occurs because the dominant factor in the scheduling decision changes from
popularity to waiting time as the request arrival rate is increased. For example, the RzW algorithm initially favors
hot pages when the request arrival rate is low, since there is little difference between waiting times at such light loads
(everybody waits for a short time) and R is the dominant factor. This behavior results in cold pages accumulating
higher waiting time than hot pages. As the system becomes more loaded, the server needs to broadcast more pages so
the worst case waiting time of cold pages increases further. Since for both RzW and LWF, the priority of a page is
based on the waiting time of its requests, heavier request rates can lead to higher priorities for cold pages. To explain
this phenomenon, we examine the behavior of ReW for two pages, a hot (popular) page “A” and a cold (less popular)

[AP%)

page “c”. The priority of the service queue entry for the cold page is:

Qc:Rc*Wc

where R, and W, are the total request count and the waiting time for page ¢, respectively. Incrementing the request
count by 1 increases this priority by a factor of the waiting time accumulated so far:

3Note that in this experiment, the simulation was run two million broadcast ticks, resulting in each page being broadcast at least 24 times.
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QL= (R + 1)« W,
or

Q/c =Q.+W.
Therefore for heavy loads where W, > W}, an additional request at time ¢ has a greater impact on cold pages than on
hot pages, since the marginal increase is determined by the waiting time. As the load is further increased, this relative
priority increase for cold pages results in a decrease in their worst case waiting time. Then, as the waiting time for cold
pages decreases, so does its impact on priorities. As a result, the worst case waiting time begins to stabilize, eventually

becoming independent of the load. Using Equation 12 with p; equal to WL, it can be seen that for RzW, the waiting
time of the coldest page (page N-1) will eventually converge to:

W, +N -1
Wi_1 = (13)

N-2 [ pt

5.3.3 Scheduling Decision Overhead
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Figure 7: Scheduling Decision Overhead

As described previously, a critical aspect of scheduling algorithms for large-scale data broadcasting is scalability. The
previous section focused on the performance of the algorithms in an ideal setting where there was no overhead for making
scheduling decisions or processing requests. In practice, however, overhead can limit the ability for on-demand systems
to support large-scale applications. All of the algorithms are fairly efficient in terms of request processing. They differ
significantly, however, in terms of scheduling overhead. In this section we examine the issue of scheduling overhead in
more detail.

Figures 7(a) and (b) show the average number of request queue entries searched each time a scheduling decision
is made (i.e., on each broadcast tick), as the request arrival rate and the database size are increased, respectively.
Figure 7(a) shows the scheduling overhead for the experiment in Section 5.3.1. As can be seen in Figure 7(a), LWF is
the highest overhead algorithm for making scheduling decisions, followed by RxW. LWF is an exhaustive algorithm,
and thus the scheduling cost is proportional to the number of distinct pages requested by clients. Under heavy request
loads, there is at least one pending request for each page. In terms of scalability in broadcast bandwidth and/or large
database size, the scheduling overhead of LWF could easily become a bottleneck. The maximal RzW algorithm, on the
other hand, examines significantly fewer queue entries at each scheduling decision. It provides 68% savings at a load of
10 requests/tick when compared to LWF. The savings increase for higher request rates; RzW examines 2729 entries on
average at a load of 1000 requests/tick; a savings of 73%. It is important to note that as was shown in Figures 6(a) and
(b), these savings in search complexity come at no cost in responsiveness.

The savings provided by RzWW’s pruning algorithm, however, are dwarfed by the tremendous savings provided by the
approximate versions of the algorithm. * At a load of 1000 requests/tick, RxW .90 and RxW .80 examine 116 and 39
entries respectively, for savings of more than 98% and 99% respectively. With « set to 0, the approximate algorithm

“Note that FCFS is not shown on these graphs. It is a O(1) scheduling algorithm and so is insensitive to the parameters varied here.
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becomes constant time (two entries are searched on each tick), thereby providing maximum scalability in terms of search
overhead.

In the second experiment shown in Figure 7(b), the request rate is fixed at 100 requests/tick and the database is
scaled from 1 to 100,000 pages. As expected the overhead of LWF grows at the highest rate compared to all other
algorithms and the overhead of maximal RxW grows at a slower rate. The approximation algorithms are observed to
be successful in keeping the overhead orders of magnitude lower, with RzWW .0 remaining constant. The practical impact
of these results is that the approximate RxW algorithms provide tremendous scalability in terms of request arrival rate
and database size. Recall that scheduling overhead also determines scalability in terms of broadcast bandwidth. Higher
broadcast bandwidth results in shorter broadcast ticks, and therefore less time for making scheduling decisions. With
RxW.0 the system can scale for any bandwidth and RxzW in general is capable of making fast scheduling decisions across
a large range of bandwidth, database size and workload intensities.

5.4 Robustness

The previous sections demonstrated the scalability of the approximate RzW approach and its ability to trade off average
case and worst case waiting time according to the demands of a particular application. Although approximate RzWW
does not depend on any access probability estimations, it 1s based on a heuristic that uses a self-adapting threshold for
determining what item to broadcast. In this section we examine the sensitivity of the various scheduling algorithms to
changes in the workload. The results indicate that the heuristics used do not make the approximate RxW algorithm
overly fragile. We present results for varying the skewness in the access pattern, changes in access probability “hot
spots”, and changes in workload intensity.

5.4.1 Changes in Access Pattern Skew
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Figure 8: Varying Workload Skew

The previous experiments have used the default value for the Zipf parameter 8, which creates a highly skewed access
pattern. To study the effect of the workload skew, we ran the algorithms with a workload generated by using the default
settings of Table 1, but with @ varied from 1 to 0.

The average waiting time results are shown in Figure 8(a). At ¢ = 0 the access probabilities are uniform, and
all algorithms converge to similar performance. As the skew is increased (moving left along the x-axis) all of the
algorithms except FCFS provide improved responsiveness. Since the request rate is kept constant at 100 requests/tick
in this experiment, the increased overlap in client interests allows more efficient use of the broadcast bandwidth for the
algorithms that take popularity into account. FCFS remains relatively stable because, under heavy loads the system
approaches a state in which there is an entry in the queue for every page of the database. At this point FCFS simply
cycles through the pages regardless of the overlap of requests. The arrival rate of 100 requests/tick used here is slightly
below that level so there 1s a small increase in the number of service queue entries as the skew 1s decreased. This
accounts for the slight changes seen in FCFS performance here. In terms of the approximations of RzW, the higher
approximation settings improve more with increased skew, as they place additional weight on the overlap of requests.

Figure 8(b) shows the number of queue items scanned for each algorithm in the same experiment as Figure 8(a). The
number of entries in the service queue slightly increases as the skew is decreased, and therefore LWF scans more entries
per decision. In contrast, all of the RzW variants (except for the constant time RxW.0) scan fewer entries as the skew
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is reduced. With lower skew, the values of the queue entries are much closer to each other, and this helps the pruning
algorithm and the approximations to stop the search much earlier. Thus, as we approach to the uniform case, the search
space decreases for the RzW algorithm and its approximations.

5.4.2 Interest Changes

A key benefit of the approximate RxW algorithm is its ability to make scheduling decisions based on the current state
of the request queue. We therefore expect the algorithm to be robust to changes in client population interest. In this
experiment we check the impact of large, fast shifts in user interests, as can arise due to external events in large-scale
data dissemination applications (e.g., news events). We measure the performance of the algorithms as the “hot spot” of
the Zipf distribution is moved within the database. To model the shift in interest, we use the offset parameter. Given a
database size of N where page numbers start from 0, the most popular (or hottest) page for a Zipf distribution is page 0
and the coldest is page N-1. With an offset of K, the probability distribution is shifted by K pages: page K becomes the
hottest page and page K-1 becomes the coldest. The simulation parameter interval is used to determine how frequently
the distribution is shifted. If the shift results in a position beyond the end of the database we wrap around.
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Figure 9: Robustness to Frequent Interest Changes

Figures 9(a) and (b) show the average deterioration in average wait time, which is the percentage increase in average
wait time compared to the waiting time experienced for the static case (i.e., no interest shifts). The interval is varied
on the x-axis (shown in log scale) from a low value of once per 100,000 ticks to an extreme value of once for each tick.
These experiments were run for 1.5 million ticks.

Figure 9(a) shows a fairly gradual shift of interest using an offset of 100 pages (recall that there are 10,000 pages
in the default database). As would be expected, all of the algorithms deteriorate as the distribution changes more
frequently. As the change rate increases the overall access pattern approaches a uniform distribution where, as shown in
the previous experiment, all of the algorithms have the same absolute performance. The key point here, is that despite
the adaptive heuristic used by the approximate RxW algorithm, it is not overly sensitive to shifts in client interest.
Figure 9(b) shows that this result also holds for larger shifts of interest (i.e., 5000 pages, or half the database). Thus,
the heuristic used by the approximate RxW algorithm allows it to adapt well even to abrupt changes in client interests.

5.4.3 Changes in Request Arrival Rates

Finally, we examine the sensitivity of the algorithms to changes in the request arrival rate. These changes are intended
to model situations where there is a sharp increase or decrease in the number of clients using the system. The heuristic
used by RzW stops searching when it encounters an entry that is within the acceptable range of the self-adjusting
threshold. If no such page is found, then the algorithm acts like the maximal RzW algorithm and searches (using
pruning) until it finds the maximal RxWW-valued entry. We ran several experiments to see if the scheduling decision
overhead of this heuristic was impacted by workload intensity changes.

Figures 10(a) and (b) show the search overhead during a time slice of an execution when the workload intensity is
abruptly increased (from 5 to 100 req/tick) or decreased (from 100 to 5 req/tick) respectively at time ¢ (as indicated
on the x-axis). The average number of items searched per broadcast decision is shown for LWF, maximal RzW, and
RxW.90. As can be seen in the figures, even with the abrupt changes in intensity, the overhead of the approximate
RaxW algorithm remains far below that of the maximal algorithm (the results for Rz¥V .80 are not shown; it is even
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less sensitive than RzW.90). The self-adapting mechanisms used by approximate RzW are able to quickly detect the
change in workload intensity and adjust accordingly.

3 3
= 10000 = 10000
S 9000 S 9000
3 8000 3 8000
= 7000 = 7000
£ 6000 £ 6000
2 5000 2 5000
S 4000 S 4000
S 3000 S 3000
© 2000 | © 2000
S 1000 S 1000
£ 0k : ' £ 0
Z t t+50000 t+100000 Z t t+50000 t+100000
Time (broadcast tick) Time (broadcast tick)
(a) 20 fold Increase (b) 20 fold Decrease

Figure 10: Impact of Sudden Changes in Arrival Rates

6 Related Work

In this paper we have presented a new algorithm for on-demand scheduling for large scale data broadcast. The directly
relevant previous work on scheduling algorithms [DAWS86, Won88, VHI6, ST97] has been addressed in detail in Section
2. In addition to this directly related work, there have been a number of related efforts on other forms of data broadcast.

Researchers in the multimedia community have studied scheduling algorithms for Video-On-Demand (VOD) systems.
As stated in Section 2 these systems involve broadcast of large, continuous objects (e.g., movies). The large granularity
of these systems along with timing requirements that arise due to viewing quality concerns makes the problem different
in many ways from the data broadcasting systems we have addressed in this paper. Still, there have been several efforts
on scheduling for VOD systems that are closely related to our work. Dan et al. [DSS94] have suggested an algorithm
that tries to bound the maximum waiting time for popular videos. The algorithm reserves pre-allocated slots for the
broadcast of popular videos while servicing other videos using FCFS. This technique requires determining the popularity
of a video, deciding on how many popular videos will be serviced with pre-allocated slots, and the frequency of broadcast
for the popular movies. In comparison, RzW is completely driven by the current state of the request queue, allowing
it to adapt quickly to changes in the workload and avoiding problems that arise when estimating access patterns in a
dynamic environment.

The VOD work most closely related to our work is that of Aggarwal et al. [AWY96]. They proposed a scheduling
algorithm that broadcasts the video with the highest R x T value, where R is the number of outstanding requests, and
T 1s the time since the last broadcast of that video. This metric is similar to RzW except that it requires maintaining a
history of the last broadcast for all videos and requires special initialization for videos that have not yet been broadcast.
Because of the large granularity of broadcast ticks for VOD systems Aggarwal et al. did not investigate the efficiency
or scalability of their scheduling approach. Thus, they did not develop any techniques analogous to the RzW pruning
and approximation approaches. Furthermore, they did not investigate the robustness of their approaches to changes in
the client workload.

There has also been much recent interest in other areas of data broadcasting for a range of system scenarios and
applications. A taxonomy of data delivery mechanisms (including various forms of broadcast) along with a framework for
describing dissemination-based systems is provided in [FZ97]. Some recent applications of dissemination-based systems
include information dissemination on the Internet [YGM96, BC96], Advanced Traveler Information Systems [SFL96]
and dissemination using satellite networks [DP96].

Much work has been done on “push-based” systems in which data i1s broadcast to clients without requiring specific
client requests. A number of systems have been proposed for broadcasting data using a periodic push. The Datacycle
Project [BGLW92, HGLWS87] at Bellcore investigated the notion of using a repetitive broadcast medium for database
storage and query processing. An early effort in information broadcasting, the Boston Community Information Sys-
tem (BCIS) is described in [Gif94]. BCIS broadcast news articles and information over an FM channel to clients with
personal computers specially equipped with radio receivers. The Broadcast Disks project [AFZ95] has investigated a
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number of aspects of data broadcast using periodic push including scheduling and client caching [AAF95] and prefetch-
ing [AAF96]. Scheduling techniques from the real-time community have been applied to data broadcast by Baruah and
Bestavros [BB97]. The issue of combining broadcast push and unicast pull is addressed in [AFZ97, SRB97]. The mobility
group at Rutgers [IB94b, IB94a] has done significant work on data broadcasting in mobile environments. A main focus
of their work has been to investigate novel ways of indexing in order to reduce power consumption at the mobile clients.
Viswanathan [Vis94] has studied algorithms for integrating push and pull for a mobile broadcast environment.

7 Conclusions

This paper has focused on the challenges of large-scale on-demand data broadcast introduced by high bandwidth broad-
casting media such as satellite or cable networks. We began by providing a comprehensive set of performance criteria
for scheduling algorithms. These criteria include average and worst case response time, three dimensions of scalability,
and robustness to changes in the nature and or intensity of the workload. We then described how previous algorithms
fail in one or more of these criteria.

We proposed a scheduling algorithm called RzWW | that aims to provide balanced treatment of both hot and cold pages
resulting in a good overall performance. The algorithm combines two previous approaches (called MRF and FCFS),
and uses a novel pruning technique to reduce the search space for making broadcast decisions. While such pruning was
shown to be effective, it was observed that such an algorithm could still eventually become a bottleneck when supporting
very large applications.

Building on specific behaviors observed for RxzW, we developed an approzimate, parameterized variant of RzW that
allows the search space to be reduced further, at the expense of making somewhat less efficient use of broadcast resources.
By varying a single parameter, the algorithm can be tuned from the regular RzW algorithm, to a constant time approach
that provides maximal scalability.

We demonstrated the performance, scalability, and robustness of the different RzW variants through an extensive set
of performance experiments and sensitivity analyses. We also provided an analytical treatment of the maximal RxzW
algorithm that provided insight into its efficient use of broadcast resources. This analysis demonstrated a key advantage
of broadcast data delivery compared to unicast delivery. Namely, that for a user population with overlapping requests
the expected average waiting time is bounded even if the client population grows infinitely. This inherent scalability of
broadcast data delivery makes it an ideal technology for large-scale data dissemination applications.
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A Already Queued Request Entries (L;)

In this Appendix, we present the derivation of Equation 6. In Figure 5(a), we have seen that an entry for page ¢ (a less
popular page) can compete for service if it is created before t.. We try to find the value of ¢, using Equation 4 which

can be rewritten as,

(V2pe(Wy +10))° = (VAp(W3))*

taking square root of each side and factoring out /X,
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P
Wy =
VP — \/P_c

or

Wi+t =[——= v Jte (14)

VP = \/Pe
The chances that a page-c entry has been waiting in the queue and that will accumulate enough priority in the interval
W4y + t. can be expressed as
Loy = / APl <w < —YP (15)
0 VPs —/Pe

where A.dt is the expected number of page-c entries created in the interval (t-td,t) and P{t < w, < p Apb t} is the
5

\/_t time units in the service queue.

probability that a request arrived in that interval spends at least  and at most NG
Therefore,

Loy = A, /00[1 — P(w. < t)]dt (16)

A=y [ / = Plws < )y

with the change of variable y = %t. Since the waiting time of page-c requests by is
W, = /00[1 — P(w, < z)]dx (17)
0
thus, applying Equation 17 on Equation 16:
Loy = AW, p_b if ¢ 1s less popular than b (18)

This completes the case for lower priority entries. Any entry with higher priority will be serviced before page-b and

therefore Loy = AW, if cis not less popular than b (19)

B Request Entries Created Later (M)

In this section we provide the derivation of Equation 10. We merely consider the entries for pages that are more popular
than b, 1.e. p; > py. Among those entries; only the ones that are created early enough, namely before ¢, as shown in
Figure 5(b), can actually compete with page-b entry. We can find the value of ¢, using Equation 8 which simplifies to

VPa(Wy —ta) = \/ps (W)

Py
te = Wil — /] —
(1=

The expected number of such page-a entries queued between ¢ = 0 and ¢, 1s therefore,

thus

My, = AWi(1 - g—i) if a is more popular than b (20)

C Expected Waiting Time When MRF is Employed

We use a similar time-based priority queuing model for MRF scheduling. However, the priority function in this case is
simply defined as

Ql(t)[MRF] = /\pi(t - ti)
where Ap; is the request rate for page i, and ¢; is the arrival time of oldest request represented in the queue entry. The
expected waiting time of a page-b entry, is defined by the pages that are going to be broadcast before page b, as stated
in Equation 2. When we calculate the expected number of entries that were already queued and will be serviced before
type-b entry, the components to be summed up for Lj 1s:

AW p’ if 1 is less popular than b

Lip =1 A; W otherwise (21)
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where A; is the arrival rate of page-1 entry, W; is the expected waiting time of type-c entry and p; is the access probability
of page 7. The expected number of pages that will be broadcast before page b even though they are initially requested

after page b is the sum of all:

' ey p
My = { AWR(1 p,) if 1 is more popular than b (22)

0 otherwise

This leads to the following expected waiting time formula, which is structurally similar to Equation 12:
N P b—1
W, + Zi:b+1 pip_bVVi + 2 im0 PiWi
b—1
1- Zi:O pl[ - ];_l:]

which also explains the scalability property in terms of request arrival rates, with a similar discussion as described in
Section 4. Note the appearance of the access probabilities in straight ratio.

W, [M RF] = (23)
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