
On-Demand Broadcast Scheduling �Demet Aksoy and Michael FranklinComputer Science DepartmentUniversity of Maryland, College Park MDdemet@cs.umd.edu, franklin@cs.umd.eduAbstractBroadcast is becoming an increasingly attractive data dissemination method for large client populations. Inorder to e�ectively utilize a broadcast medium for such a service, it is necessary to have e�cient, on-line schedulingalgorithms that can balance individual and overall performance, and can scale in terms of data set sizes, clientpopulations, and broadcast bandwidth. We propose an algorithm, called RxW, that provides good performanceacross all of these criteria and that can be tuned to trade o� average and worst case waiting time. Unlike previouswork on low overhead scheduling, the algorithm does not use estimates of the access probabilities of items, but rather,it makes scheduling decisions based on the current queue state, allowing it to easily adapt to changes in the intensityand distribution of the workload. We demonstrate the performance advantages of the algorithm under a range ofscenarios using a simulation model and present analytical results that describe the intrinsic behavior of the algorithm.1 IntroductionAdvances in telecommunications, internetworking, and mobile computing have enabled the development of large-scaledata dissemination applications, in which information is provided to vast numbers of users distributed around theworld. Examples of such applications include election result servers, sporting event kiosks, news providers, and softwaredistribution, to name a few. The World Wide Web has provided a universal platform for developing dissemination-based applications, but all too frequently these web-based systems fail to meet the high user demands placed on them,particularly under peak loads. The result is unacceptably slow response times and poor availability. As the scale of suchsystems in terms of the number of users and the amount of information continues to grow, these problems have becomeeven more critical.Technology improvements in delivery mechanisms such as direct broadcast satellite, cable, cellular and even traditionaltelephone networks are providing high bandwidth delivery channels to homes, o�ces, and mobile users. The increasingavailability of high bandwidth links, however, is only a partial solution to these scalability problems, as improvedcommunications bandwidth does not ease the burden on overloaded servers.For dissemination-based applications, where there is often a signi�cant degree of commonality among the interests ofthe users, unicast data delivery as used by current Web servers is wasteful of resources. With unicast, a data item mustbe transmitted for each client that requests it, so the load on the server and the network increases with every client.In contrast, data broadcast can satisfy the needs of potentially many clients using a single transmission. Broadcasting,therefore, has the potential to solve the server scalability problems that arise with large-scale data dissemination.Furthermore, the emerging infrastructure for providing large-scale data delivery is in many cases organized in a waythat supports broadcast. For example, satellite and cable technologies provide high, shared bandwidth from serversto clients, while providing much less bandwidth in the opposite direction. Such an arrangement lends itself well tobroadcasting. For these reasons, there is increasing commercial and research interest in data broadcasting.A key consideration in the design of an on-demand broadcast system is the algorithm used to schedule the broadcastin response to the requests received from clients. The challenge is to devise a scheduling algorithm that providesgood average and worst case performance, scales well (in terms of increasing request arrival rates, database sizes, andbandwidth), and is robust in the presence of typical environmental changes. Previous studies of broadcast schedulingalgorithms (e.g., [DAW86, Won88, VH96, ST97]) have failed to address one or more of these issues. Some approacheshave used simple scheduling policies such as FCFS (First Come First Served), which provide average case performancethat is signi�cantly lower than what could be supported by the broadcast medium. More sophisticated approaches havebeen based on assumptions that limit their applicability, such as assuming very small database sizes, static data access�An earlier version of this paper appears in the proceedings of the IEEE INFOCOM Conference, San Francisco, CA, March 1998. Thiswork has been partially supported by the NSF under grant IRI-9501353, by Rome Labs agreement number F30602-97-2-0241 under DARPAorder number F078, and by research grants from Intel and NEC.

probabilities (thereby limiting the ability to adapt to changing client needs), and/or ignoring the overheads associatedwith making scheduling decisions.This paper makes three main contributions. First, we explicitly identify the performance and scalability criteria thatmust be met by scheduling algorithms for large-scale on-demand broadcast environments, and describe how previousalgorithms fail to meet one or more of them. Second, we develop a parameterized scheduling algorithm, called RxW,that performs well along all of these criteria and can be tuned to focus on the needs of a particular application or system.RxW is robust to changes in the client population and workload because it makes scheduling decisions based on thecurrent request queue state rather than depending on estimates of data item access probabilities. Third, we present ananalytical study along with detailed simulation results and sensitivity analyses to back up these claims.Our work is focused on systems that disseminate relatively small (i.e., tens of KBytes), distinct objects such as webpages or database pages. A motivating example of such a system is a broadcast-based web proxy server where clients areInternet browsers (or other proxy servers) that request web pages. Such a system could conceivably be used by millionsof clients and could provide access to millions of data items, and therefore, the issues of performance, scalability, androbustness are paramount. It is important to note that our work does not currently address broadcast scheduling forlarge, continuous objects such as videos [DSS94, AWY96].The remainder of the paper is structured as follows. In Section 2 we give a brief description of the problem and de�nethe important criteria for evaluating scheduling algorithms for large-scale broadcast. We then describe how previouslyproposed algorithms measure up to these criteria. In Section 3 we describe the RxW scheduling algorithm and itsapproximation. In Section 4 we present an analytical treatment of the algorithm. Section 5 presents an evaluation of thevarious approximation settings in terms of their performance, scalability, and robustness to workload changes. Section 6discusses related work. Finally, Section 7 presents our conclusions.2 Background2.1 Environment and AssumptionsWe begin by presenting a simple satellite-based broadcast scenario to motivate the scheduling problem being addressed.In this scenario (depicted in Figure 1) there is a single server and a large population of clients. Two independentnetworks are used: a terrestrial network over which clients send requests to the server, and a satellite downlink overwhich the server broadcasts data to the clients. Such an arrangement is similar to Hughes Network System's DirecPCarchitecture [DP96] and other satellite data services.When a client needs a data item (e.g., a web page or database object) that it cannot �nd locally, it sends a requestfor the item to the server. Client requests are queued up at the server upon arrival. The server repeatedly chooses anitem from among these requests, broadcasts it over the satellite link, and removes the associated request(s) from thequeue. Clients monitor the broadcast to receive the requested data.
Receiving

 Point

Clients

SERVER

Satellite Link

Broadcast

 stream of page requests sent on uplink

 downlink

Satellite

Figure 1: Example Data Broadcasting ScenarioSimilar to previous work on broadcast scheduling [DAW86, Won88, ST97, VH96] we make several assumptions aboutthe environment: We assume that there is a single broadcast channel that is monitored by all clients and that the channelis fully dedicated to the data broadcast (i.e., the data server can use the entire bandwidth). Clients continuously monitorthe broadcast after they make a request and we do not consider the e�ects of transmission errors, so that all clients thatare waiting for an item receive that item when it is broadcast. We ignore the uplink delay which we expect to be small2

and we focus on the case where the data items are �xed-length pages, such as database or memory pages. The use of�xed-length pages simpli�es the algorithm descriptions and analysis; Recent work in broadcast scheduling has shownhow to extend scheduling algorithms to incorporate variable-length items [VH96, ST97].Each page is broadcast in a single burst; The time it takes to broadcast a page is referred to as a broadcast tick, andwe use such ticks as a unit of performance measurement. The use of ticks emphasizes that our results apply to systemsof many di�erent scales. For example, in a system with 16 KB pages and 1 Mb/sec downstream bandwidth a broadcasttick would be approximately 0.13 seconds, while if the bandwidth was 100 Mb/sec a tick would be 1.3 milliseconds.Regardless of these absolute values, if algorithm A is shown to be 50% faster than algorithm B in terms of ticks, then aslong as both algorithms are su�ciently fast to allow full utilization of the broadcast bandwidth, the same relationshipwill hold in terms of absolute time as well.2.2 Performance IssuesGiven the application environment described in the preceding section, we can now state our criteria for evaluatingscheduling algorithms for large-scale on-demand data broadcast. We divide the criteria into three groups: responsiveness,scalability, and robustness.2.2.1 ResponsivenessThe success of a scheduling algorithm is ultimately determined by its ability to get requested data to the clients quickly.There are two metrics of importance in this regard. First, we de�ne average wait time as the amount of time on averagefrom the instant that a client request arrives at the server, to the time that the item is broadcast. Previous work onbroadcast scheduling has focused almost exclusively on such average performance. For interactive systems, however, itis also important to ensure that the scheduling algorithm does not induce starvation of requests for unpopular items.Thus, we also measure the worst case wait time, which is the maximum amount of time that a client request waits inthe service queue before being satis�ed.There are two factors that determine the responsiveness of a scheduling algorithm. The �rst is the quality of theschedule produced. It has previously been shown that the optimal allocation of broadcast bandwidth for �xed-lengthdata items should be in proportion to the square roots of their probability of access [AW87]. A good scheduler shouldtherefore approach such an allocation. The second factor, however, is the decision overhead, that is, the cost of makinga scheduling decision. In order to make full use of the broadcast bandwidth, the time required to make a schedulingdecision must be less than the length of a broadcast tick. A scheduler that makes decisions more slowly will stall thebroadcast, resulting in unused bandwidth, thereby wasting a critical shared resource.Most previous work in on-demand scheduling has focused on schedule quality, making the implicit assumption that allof the algorithms had su�ciently low overhead. The point at which such overhead begins to hurt overall performance ishighly situation-dependent, being impacted by among other things, the ratios among broadcast bandwidth, data itemsize, server processor speed, and database size. Thus, in this paper, we follow the approach of ignoring overhead whenreporting response times, but also provide measurements of the overheads incurred by the various scheduling approachesunder various scenarios.2.2.2 ScalabilityWhile responsiveness is a primary consideration for algorithms, it is also crucial that good performance be provided overa wide range of environments. Previous work in broadcast scheduling has emphasized responsiveness without focusingon scalability. In particular, it is necessary for the algorithm to perform well as the problem grows in several dimensions:Request Arrival Rates - When a new request arrives at the server, the server must decide whether or not to placeand/or update an entry in the service queue for the requested item. The speed of such processing limits the rate atwhich requests can be processed by the server. Since a high-bandwidth broadcast channel is utilized most e�ectivelywhen there are a large number of clients, the system must be able to handle heavy request tra�c.Database Size - Because a single broadcast of an item satis�es all outstanding requests for that item, the size of therequest queue managed by the server is typically proportional to the number of items with outstanding requests ratherthan the number of individual requests. Thus, for some algorithms, the scheduling overhead is related to the numberof items that can be requested by clients. As the amount of data that is available for dissemination increases, it isimportant that the scheduling algorithm overhead remains reasonable.Broadcast Rate - Broadcast technologies are continually being improved to provide higher bandwidth. As the band-width is increased, the amount of time allowed to make a scheduling decision is decreased. Thus, the scheduler musthave low overhead in order to avoid becoming a bottleneck.3

2.2.3 RobustnessIn order to achieve the goals of responsiveness and scalability, scheduling algorithms typically employ approximationsand/or heuristics. Such techniques must not cause the algorithm to perform poorly if the workload or the environmentchanges either abruptly or gradually. In this study, we examine the robustness of scheduling algorithms to changes inaccess patterns and request arrival rates.2.3 Previous AlgorithmsAs stated in the Introduction, several algorithms for on-demand broadcast scheduling have been proposed previously. Inthis section, we describe existing algorithms and discuss their limitations with respect to the criteria that were outlinedin the preceding section. Dykeman et al. [DAW86] studied on-line scheduling algorithms, and were the �rst to pointout that traditional FCFS scheduling would provide poor average wait time for a broadcast environment when theaccess distribution for data items was non-uniform. They proposed several algorithms aimed at providing improvedperformance. The algorithms studied in [DAW86] (and later in [Won88]) are the following:� First Come First Served (FCFS): broadcasts the pages in the order they are requested. To avoid redundantbroadcasts, requests for pages that already have entries in the queue are ignored.� Most Requests First (MRF): broadcasts the page with the maximum number of pending requests.� Most Requests First Lowest (MRFL): Similar to MRF, but breaks ties in favor of the page with the lowestaccess probability.� Longest Wait First (LWF): selects the page that has the largest total waiting time, i.e., the sum of the timethat all pending requests for the item have been waiting.In Figure 2 we show the average waiting time (in broadcast ticks) for a workload with a database of 10000 pages.Client requests for pages are generated using a highly-skewed Zipf distribution (with �=1). The request inter-arrivaltime is determined by an exponential distribution, the mean of which is varied along the x-axis (expressed in requestsper broadcast tick). The results were generated using the simulation environment that is described in Section 5. Asin [DAW86], the overheads associated with running the scheduling algorithm at the server are not modeled here.
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 10 100 1000

 A
ve

ra
ge

 W
ait

 T
im

e
(b

ro
ad

ca
st

tic
k)

Req. Arrival Mean (requests/broadcast tick)

LWF
MRF

MRFL
FCFSFigure 2: Average Wait Time for Algorithms of Dykeman et al.As can be seen in the �gure, the best performance overall in this case is provided by LWF. As would be expectedthe average wait time increases for all algorithms as more requests are introduced, but perhaps less predictably, theaverage response time eventually levels o� and becomes insensitive to additional load. At this point, the remainingalgorithms are approximately 2.5 times slower than LWF. Unfortunately, a straightforward implementation of LWF isnot practical for a large system, as at each broadcast tick, it would recalculate the total accumulated wait time for everypage with pending requests in order to decide which page to broadcast next. For a high-bandwidth system with a largedatabase, such a scheduling algorithm would likely to become a bottleneck.1 In contrast, the other algorithms examinedby Dykeman et al. lend themselves easily to lower overhead implementations.The results of Figure 2 agree with those of [DAW86, Won88] except for two key points. First, the earlier work didnot investigate the performance of the algorithms under very high loads, so it did not identify the attening of the1In our implementationof LWF, we found that using one processor of a DEC Alpha 2100 4/275 server and assuming a broadcast bandwidthof 155 Mbps, the LWF scheduling decision time became a bottleneck with a database size of 5543 8KByte pages.4

performance for all of the algorithms under high load. This behavior is a key property for broadcast based servers,and is explained in Section 4. Second, the performance of MRFL in the earlier study was seen to provide performancebetween that of FCFS and LWF, whereas in our experiments it was seen to perform worse than FCFS. The di�erence inthese results stems from the fact that the earlier study was performed using a very small database (100 items, comparedto 10000 in Figure 2). As the size of the database increases, the probability of having a tie for the largest number ofrequests diminishes. Without ties, MRFL degenerates to MRF.The performance of MRFL for large systems has also been shown by Su and Tassiulas [ST97]. They proposed analternative algorithm, called PIP-0.5 (Priority Index Policy), that performs as well as LWF in terms of average waittime. Unlike LWF, PIP-0.5 can be implemented to run with O(1) complexity, by carefully organizing the service queueand slightly increasing the work that must be done when a request arrives at the server. Even with this optimization,however, PIP-0.5 falls short of our performance criteria, because it is based on estimates of the probability of accessfor each item. As a result, its usefulness is limited to fairly stable environments where those probabilities do not oftenchange signi�cantly. Furthermore, the history mechanism that must be employed to obtain such probability estimatescan result in additional overhead, particularly for very large data sets. Algorithms based on access probabilities andbroadcast histories have also been proposed by Vaidya and Hameed [VH96]. These algorithms have similar performanceto the PIP-0.5 algorithm, and also share that algorithm's limitations in terms of robustness to changing workloads.3 RxW : A Parameterized AlgorithmWe have developed a new broadcast scheduling algorithm, called RxW , which is a practical, low-overhead, scalableapproach that provides excellent performance across a range of scenarios. We begin the presentation of the algorithmby describing the intuition behind it. We then describe three forms of the algorithm: 1) an exhaustive search-basedapproach that �nds the page with the maximalRxW value; 2) a lower-overhead implementation, that prunes the searchspace, but also �nds the maximal RxW -valued page; and 3) an approximate version that can be adjusted to tradeo�scalability, average case, and worst case waiting time.3.1 IntuitionThe results described in Section 2.3 demonstrated that the low overhead algorithms investigated by Dykeman et al.,have poor average case performance compared to the higher-overhead LWF algorithm. As described in [AF98], furtheranalysis showed that MRF provides the lowest waiting time for hot pages, but its performance for cold pages is by farthe worst. MRF chooses the page with the highest number of outstanding requests, so that requests for infrequentlyaccessed pages must wait until su�cient requests have arrived. In fact, MRF is not a starvation-free algorithm; it isquite possible that a request for a very cold page is never satis�ed. In contrast, FCFS is a fair algorithm spendingmore bandwidth for cold pages than all others do. The fact that both algorithms favor one class of pages over the otherresults in them both having poor performance on average. In contrast, LWF provides good performance for both typesof pages, resulting in better average performance overall.3.2 The Exhaustive RxW AlgorithmBased on the above observations we developed the RxW algorithm, which combines the bene�ts of MRF and FCFSin order to provide good performance for both hot and cold pages, while ensuring scalability by having low overhead.Intuitively, RxW broadcasts a page either because it is very popular or because it has at least one long-outstandingrequest. At each scheduling decision the RxW algorithm chooses to broadcast the page with the maximal R�W valuewhere R is the number of outstanding requests for that page and W is the time that the oldest outstanding request forthat page has been waiting. In this section, we introduce an exhaustive version of the algorithm, which has schedulingoverhead similar to that of LWF; in the subsequent sections we describe the techniques we use to reduce this overhead.The exhaustive RxW algorithm is an O(N) algorithm that has overhead similar to LWF. It maintains a structurecontaining a single entry for each page that has outstanding requests. Entries contain the page identi�er (PID), thecount of the number of outstanding requests (R), and the arrival time of the oldest outstanding request (1stARV) forthe item. In the algorithm, times are represented in broadcast ticks, rather than in wall-clock time. The W value of apage can be computed as W = clock�1stARV where clock is the current time. The structure is hashed on PID. Thealgorithm works as follows:When a request arrives at the server { a hash lookup is performed on the PID of the the requested page. If an entryalready exists, then the R value of that entry is simply incremented. If no entry is found (i.e., there are currently nooutstanding requests for the page), then a new entry is created with R initialized to 1, and 1stARV initialized to thecurrent time in broadcast ticks (i.e., the number of items broadcast so far).5

For each broadcast decision { each entry in the request structure is examined and the page with the largest (R �W)value is chosen to be broadcast. The entry for this page is then removed from the service queue.3.3 Pruning the Search SpaceThe search overhead of RxW can be reduced by performing more work at request arrival time to keep the requestinformation better organized. We have developed a pruning version of the exhaustive RxW algorithm that reduces thenumber of entries that must be examined in order to �nd the maximal RxW -valued page. This algorithm uses twosorted lists that are threaded through the request structure: 1) the W-List, ordered by increasing 1stARV value, similarto the queue maintained by FCFS; and 2) the R-List, which is ordered by descending R value. As shown in Figure 3,these two lists are maintained as doubly-linked lists that are threaded through the request structure.
R-Index

Service Queue

of W-List

R value

80

1

next in R-Listnext in W-List

10 1b
20 1n

95 25k

prev in R-Listprev in W-List

PID 1 Arvst R

90 40a

first

first

of R-List

50 2y

99 20z
98 80f

tailhead

tailheadFigure 3: The RxW Service Queue Data StructuresThe W-List has very low maintenance overhead, as once an entry is added to the list, it is not moved until thecorresponding page is broadcast, regardless of how many requests arrive for that page. The R-List, however, is muchmore dynamic. Every time a request arrives for a page, its entry must be moved in the R-List. Thus, an additionalstructure, called the R-Index is used to facilitate R-List maintenance. The R-Index has an entry for each distinct Rvalue, with a pointer to the �rst entry in the R-List that has that value. When a request arrives for an item that alreadyhas an entry, the R-Index is used to quickly locate the place in the R-List to where the entry must be moved after itsR value is incremented. The R-Index makes request processing a constant time operation, thereby removing a potentialbottleneck to handling large request arrival rates.When an item is broadcast, its entry is removed from the service queue and the W-List and R-List are patched usingthe doubly-linked lists. Furthermore, if the entry removed was the �rst with its particular R value, then the R-Index isupdated to point to the next entry with that value, if any.The pruning technique starts by examining the entry at the top of the R-List and setting MAX, the maximumR�Wvalue seen so far, to the R �W value of that entry. The W values of interest can then be restricted using R', the Rvalue of the next entry in the R-List. Since the R-list is sorted in descending order, it is known that for any unexaminedentry to have an R�W value greater than MAX, it must have a W value satisfying the equationW > MAXR0Thus, a limit can be placed on 1stARV. Namely, it must be less than:limit(1stARV) = clock � MAXR0Since the W-List is sorted in ascending order, this limit e�ectively truncates the W-List. That is, it de�nes a point inthe W-List below which it is known that no entry can exceed the current maximal RxW value.Next, the entry at the top of the W-List is examined and a limit(R) is calculated in the analogous way. The algorithmthen keeps on alternating between the two lists, updatingMAX when an entry with an R�W value greater than MAXis encountered, and incrementing the limits if possible. The algorithm stops when the limit is passed on one of thelists or when all the entries have been examined half way through both lists. At this point, MAX is known to be themaximal R�W value for all pages so the page with that value is chosen for broadcast.An example of the pruning technique is shown in Figure 4. In the example, the R-List and W-List are shown as twoseparate lists (for ease of explanation) and the current clock value is 100 ticks. The limits shown are those that wouldbe computed after the top of each list has been examined. First the entry for page f (the top of the R-List) is examinedresulting in MAX being set to 160 and limit(1stARV) being set to 96. Next, the entry for page b (the top of theW-List) is checked. RxW of b is less than MAX (90 vs 160) so MAX is left unchanged, but limit(R) is set to 2. The6

 (Requests) (1st Arv)

R-list W-list

Limit(1st Arv)=96

max(R) max(W)

1

2

25

40

50

10

20

 80

20

1

clock = 100

f

k

b

n

a

z

y

b

y

f

z

n

a

k

98

95

90

99

Limit(R)=2 Figure 4: Pruning the Search Spacealgorithm then checks page a, which has an RxW value of 400, and so MAX is updated to 400, and limit(1stARV) isset to 84. The algorithm continues searching until page y is examined, at which point the limit on the W-List is reachedand the algorithm stops. In this example, page a has the highest RxW value, so it is chosen to be broadcast.In the analysis and performance study that follows, we will use the term \RxW algorithm" to refer to this pruningvariant unless explicitly stated otherwise.3.4 Approximating RxWThe pruning technique described in the previous section is indeed e�ective in reducing the search space. For example,for our Zipf-based workload, it results in a 73% reduction in entries examined as will be discussed in Section 5.3.3.While such a substantial savings is helpful, it is not always su�cient to keep the scheduling overhead from ultimatelybecoming a limiting factor as the system is scaled to the large-scale applications that will be enabled by the nationaland global broadcasting systems being deployed.Based on insight gained from early experiments with the RxW algorithm, we realized that the scheduling overheadcan be reduced dramatically by backing o� from the requirement of maximality for the RxW value. Building on speci�cbehaviors observed for RxW , we have developed an approximate, parameterized variant of RxW that allows the searchspace to be reduced further, at the possible expense of making suboptimal broadcast decisions. By varying a singleparameter, the algorithm can be tuned from having the same behavior as the RxW algorithm described so far, to beinga constant time approach.The parameterized version of RxW is based on two insights about RxW scheduling. First, we found that with highlyskewed access patterns (as would be expected in many dissemination-oriented applications), the page with the maximumRxW value is typically found very near the top of at least one of the two lists R-List or W-List. This behavior is dueto the large di�erences between the top and bottom values in the sorted lists that arises in workloads of high andnon-uniform request rates on very large databases. As a result, even the pruning-based RxW algorithm can spendsubstantial resources examining entries after it has already encountered the maximum-valued entry. The second insightis that given a static workload (i.e., in terms of request arrival rate and access probability distribution) the averageRxW value of the page chosen for broadcast typically converges to some value. This latter insight is exploited to createa self-adapting approximation algorithm based on the RxW value of the most recently broadcast page. We take care,however, to ensure that the approximation works well even in the presence of a changing workload.The algorithm maintains a self-adapting threshold, which is updated on every broadcast tick by averaging the currentthreshold value with the RxW value of the page that was chosen to be broadcast on that tick. The threshold is initiallyset to 1 and then on each broadcast tick is recomputed asthreshold(t + 1) = threshold(t) + lastRxW (t)2where lastRxW(t) is the R�W value of the page that was broadcast at tick t. The approximation algorithm requiresa single parameter called �, which can be set to any value 0 or greater.2 To �nd the next page to broadcast therequest structure is searched as in the regular (pruning) RxW algorithm, but rather than searching for the page withthe maximal RxW value, the algorithm chooses the �rst page it encounters whose RxW value that is greater than orequal to � � threshold. If no such page is found, then the algorithm acts like the regular RxW algorithm and returnsthe page with the maximum RxW value.The setting of the � parameter determines the performance tradeo�s between average waiting time, worst case waitingtime, and scheduling overhead. The smaller the value of the parameter, the fewer entries are likely to be scanned. Atan extreme value of 0, the algorithm simply compares the top entry from both the R-List and the W-List and chooses2Typically the � parameter will be set to a value between 0 and 1. Larger values can also be used. In the limit, setting � to 1 wouldresult in behavior identical to that of the regular RxW algorithm. 7

the one with the highest RxW value. In this case, the complexity of making a scheduling decision is reduced to O(1),ensuring that broadcast scheduling will not become a bottleneck regardless of the broadcast bandwidth, database size,or workload intensity.In Section 5, we examine the performance tradeo�s of several settings of the � parameter. First however, we presentan analytical treatment of the RxW algorithm that identi�es several intrinsic properties of the schedules it produces.4 Upper Limit on Average Waiting TimeIn Section 2.3 we observed that for all of the algorithms, as the request arrival rate is increased, the average waiting timeeventually levels out at an algorithm dependent limit. This behavior is in contrast to unicast where the average waitingtime in such a case would grow asymptotically. In this section we show that broadcasting is inherently scalable in termsof increased request arrival rates (the practical impact of client population growth) by analyzing the expected waitingtime when the RxW algorithm is employed. These results also analytically show that RxW produces higher-qualityschedules than MRF.4.1 RxW as a Time-Dependent Priority QueueThe expected waiting time for a speci�c page when RxW is employed can be determined through the use of a priorityqueuing model [Kle76]. In Section 3.2 we explained how the service queue is implemented using a single entry for eachunique page of the database with outstanding requests. Here we map each of those request queue entries to a logicalrequest whose priority at a given time is equal to the R�W value of the entry at that time. In other words, we treatall individual (client) requests made on a speci�c page as a single logical request that will be serviced and removed fromthe queue when the requested page is broadcast. In the rest of the section, we refer to the queue entry that representsall individual requests currently outstanding for page i as a logical page-i entry.Assuming Poisson arrivals, the priority (R � W value) of a page-i entry is a function of time, denoted by RxWi(t):RxWi(t) = �pi(t� ti)2 (1)where � is the client request arrival rate, pi is the probability that a request is for page i, and ti is the arrival time ofthe request that caused the page-i entry to be created. Equation 1 is a trivial formulation since the expected number ofindividual request arrivals for page i in the time interval [t - ti] is �pi(t� ti). We simply multiply the expected numberof requests by (t � ti), the waiting time of the request that caused the creation of the entry.
time

page-b entry

page-c entryRxW(t) Wbtc 0 RxWc(t) RxWb(t)(a) Request entries already in queue time

page-a entry

page-b entryRxW(t) RxWb(t)ta0 WbRxW a(t)(b) Request entries created after page-b entryFigure 5: Conditions to be serviced before page-b entryIn this time-dependent priority queuing model, we consider a speci�c queue entry, page-b, and examine its waitingtime behavior relative to other entries. The waiting time of a page-b entry, Wb, depends on the number of entries thatwill be serviced before the page-b entry, which is essentially equal to the number of pages that will be broadcast beforepage b, such that: Wb = Wo + �Lb + �Mb (2)where Wo is the mandatory wait for the completion of an already initiated page broadcast, � is the service time, (i.e.,one broadcast tick), Lb is the expected number of pages that will be broadcast before page b for which entries werealready in the service queue when the page-b entry was created, and Mb is the expected number of pages that will bebroadcast before page b even though their initial request arrives after the page-b request was created. In the followingparagraphs we derive the expected values of Lb and Mb and then combine the results in Section 4.2.First, we calculate Lb, the number of pre-existing queue entries that will be serviced before the page-b entry. ForPoisson arrivals, all pre-existing entries for more popular pages will typically be serviced before the page-b entry. An8

entry for a less popular page, on the other hand, can compete with the page-b entry only if it was created early enoughbefore the creation of the page-b entry. For example, Figure 5(a) shows the evolution of the priorities of two queueentries over time. The origin of the graph is the time at which the page-b entry is created. Time prior to the creation ofthe page-b entry is shown on the negative x-axis. The priority values are plotted as a continuous function of time andthe discrete R �W values are shown with bars drawn at each broadcast tick. In Figure 5(a), page c is less popularthan page b and thus, it can accumulate a higher priority before timeWb only if its initial queuing time is before tc. Wecan �nd the value of tc using the equation: Qc(Wb) = Qb(Wb) (3)or �pc(Wb + tc)2 = �pb(Wb)2 (4)The expected number entries included in Lb for less popular pages is calculated by solving Equation 4. The total canbe expressed as: Lb = N�1Xi=0 Lib (5)where N is the number of pages in the database, and:Lib = f �iWiqpipb if i is less popular than b�iWi otherwise (6)where �i is the rate at which a page-i entry is created, Wi is the expected waiting time for a page-i entry and pi is theaccess probability of page i. For the derivation of Equation 6 see Appendix I.We next calculate Mb, the expected number of page-i entries that will be serviced before the page-b entry even thoughthey are created after the page-b entry is created. In this case, only entries for pages more popular than b can competefor service. For example, as shown in Figure 5(b), a page-a entry (such that page a is more popular than page b), canreach the priority level of the page-b entry before time Wb only if it is created before ta. We can calculate the value ofta using: Qa(Wb) = Qb(Wb) (7)or �pa(Wb � ta)2 = �pb(Wb)2 (8)When we solve the equation for ta the expected number of entries that will be serviced before the page-b entry eventhough they are created afterwards is: Mb = N�1Xi=0 Mib (9)where Mib = f �iWb(1�qpbpi) if i is more popular than b0 otherwise (10)The derivation of Equation 10 is given in Appendix II.4.2 The Limiting Behavior of Waiting TimeIn this section, we combine Equations 5 and 9 to derive the expected waiting time of the page-b entry. Assuming thatall pages are ordered by decreasing popularity, such that page 0 is the hottest page and page N-1 is the coldest, theexpected waiting time for a page-b entry is:Wb = Wo + �(b�1Xi=0 �iWi + N�1Xi=b+1�iWirpipb)+�(b�1Xi=0 �iWb(1�rpbpi))where �i, the rate at which page-i entries are created, is�i = 1Wi + 1�pi (11)The creation of a new page-i entry is only possible after the broadcast of page i. Therefore, the expected time betweentwo successive page-i creations is the sum of the expected time a page-i entry spends in the queue and the time until the9

next request for page i that results in the creation of a new page-i entry (i.e., after the previous page-i entry is serviced).Note that �i is bound to 1Wi for large values of �. The expected waiting time of a page-b entry, therefore, is equal to:Wb = Wo +PN�1i=b+1 �iq pipbWi +Pb�1i=0 �iWi1�Pb�1i=0 �i[1�qpbpi] (12)where �i is the utilization of the bandwidth by page i broadcasts, which is equal to ��i and bounded by �Wi for heavyrequest rates.There are two observations that follow this analysis. First, for heavy request tra�c, the expected value of waitingtime is independent of request arrival rates. This explains the inherent scalability in terms of request arrival rates. Theonly factor that determines the average waiting time is the relative popularity of pages in the simple form of square rootratios. In general, the leveling o� behavior of average waiting time is independent of the scheduling algorithm used aswe have already observed in Figure 2. An intuitive explanation of this phenomenon is that for heavy request rates, anincrease in the number of requests implies a similar increase in the number of requests that can be satis�ed by a singlebroadcast of an item. This increase in the service rate balances that of the request arrival rate.The second observation is that the dependency on access probabilities in Equation 12 is in the form of a ratio of squareroots. It has previously been shown that the optimal bandwidth allocation for push-based broadcast (i.e., broadcastwithout explicit requests) is by the ratio of square root of page access probabilities [AW87]. Thus, we expect the RxWalgorithm to have good performance in terms of overall responsiveness. It is important to note, however, that RxWuses the current queue state for making scheduling decisions, rather than depending on estimates of access probability.Thus, the RxW algorithm can be robust to changes in the workload.In Appendix III we apply a similar analysis to MRF. The expected waiting time formulation derived there is struc-turally similar to Equation 12. The only di�erence is that the equation for MRF scheduling has a plain ratio betweenthe probabilities pi and pb, while RxW has a square root-based ratio as shown in Equation 12. This implies thatMRF favors hot pages more than it needs to and therefore can not exploit the bene�ts of broadcast bandwidth to itsmaximumbene�t. As a result, we are able to analytically describe the reason behind MRF's poor performance: namely,over-emphasizing hot pages.5 Experimental ResultsIn this section we describe the results of our simulation study comparing the maximal and approximate versions ofRxW and the LWF and FCFS algorithms along the dimensions of performance, scalability, and robustness outlined inSection 2.2. First, however, we provide and overview of the simulator and the methodology used for the experiments.5.1 Simulation EnvironmentOur experiments were performed using a simulationmodel written in CSIM [Sch86]. The simulation model represents anenvironment similar to that described in Section 2, but is simpli�ed in several ways. The broadcast channel is modeled asa server with a �xed rate of broadcast. We do not specify an absolute value for this rate, but rather, use broadcast ticksas our (abstract) measure of time for all aspects of the simulation. As has been described previously, scheduling overheadis not included in the responsiveness numbers (average and worst case wait times) presented here. This simpli�cation isequivalent to making the assumption that all of the algorithms are able to make scheduling decisions fast enough to keepthe broadcast bandwidth fully utilized. As a result, the responsiveness numbers presented for slower algorithms suchas LWF may be optimistic. In order to address the overhead issue, we provide detailed measurements of the averagenumber of entries searched per broadcast decision by the various algorithms under di�erent workloads.The broadcast channel is modeled as being error-free. That is, an item sent out on the broadcast is received by allof the clients that are waiting for it at that time. In the model, the client population is represented by a single requeststream. We use an open system model since our work is aimed at supporting extremely large, highly dynamic clientpopulations, and such client populations can not be realistically modeled with a closed simulation system. We do notmodel the costs of using the back-channel for sending requests to the server as these costs will be relatively small forpage requests.The main parameters and settings for the workloads used in the experiments are shown in Table 1. The clientpopulation model generates requests with exponential inter-arrival times with mean �. The request pattern is shapedwith a Zipf distribution [Knu81]. This is a frequently used distribution for non-uniform data access. It produces accesspatterns that become increasingly skewed as its � parameter increases from 0 (uniform access probability) to 1 (highlyskewed). The requests are distributed over a database containing dbsize �xed-sized pages. Two additional parameters,10

Symbol Description Default Range Unit� Mean Req. Arrival Rate (Exponential) 100 [1-1000] requests/tick� Request Pattern Skewness (Zipf) 1.0 [0.0-1.0] -dbSize Database Size 10000 [100-50000] pageso�set Shift in Interest 0 [0-5000] number of pagesinterval Period of Interest Change n/a [1-100000] broadcast ticksTable 1: Workload Parameters and Settingscalled o�set and interval, are used to simulate interest shifts of the client population and the frequency of such shifts,respectively.5.2 Experimental MethodologyFor the results presented in the following sections, each data point was obtained over a run of at least 300,000 broadcastticks. To determine this value, we examined the execution of the various scheduling algorithms using the defaultparameters and observed that the queue length (in terms of outstanding requests, not the one-per-page service queueentries), and average waiting times stabilized typically after the �rst 50,000 broadcast ticks. For reporting worst casewaiting times we run the simulation longer, ensuring that every page in the database is broadcast multiple times (i.e.,that starvation is not occurring).Since we are using a non-blocking open system model, it is likely that at the end of a simulation run some unsatis�edrequests will remain in the queue. A seemingly important question is how to include these \orphaned" requests in theperformance results. One approach is to treat all such orphaned requests as satis�ed at the time the simulation is ended.An alternative is to remove those requests from consideration. We compared both approaches for our default parametersettings and found that in both cases, the average wait time converged to the value predicted by Little's law [Tri82]based on the observed stable queue length, but that the approach of including orphans converged slightly faster. Thus,we use the approach of considering the orphaned requests to be satis�ed on the last tick of the simulation run whencalculating average waiting time.5.3 Responsiveness and ScalabilityWe begin by examining the responsiveness of several variants of the RxW algorithm, and comparing them to the LWFand FCFS algorithms of Dykeman et al. We report results for four variants of RxW : The maximal (pruning) RxW algo-rithm, and the approximate algorithm with � values of 0.90, 0.80, and 0 (referred to as RxW .90, RxW .80; andRxW .0,respectively). Recall that RxW:0 chooses between the top entries of the R-List and W-List, and thus, makes schedulingdecisions in constant time. We �rst examine the average and worst case waiting times in the absence of schedulingoverhead, and then explore the scheduling overheads of the various approaches in detail.5.3.1 Average Waiting TimeFigure 6(a) shows the average waiting time for each of the scheduling algorithms as the mean request arrival rate isvaried from 1 per tick to 1000 per tick along the x-axis (shown with a log scale). All of the algorithms exhibit similarcharacteristics here, with the average wait time increasing but ultimately leveling o� as the request arrival rate isincreased. As discussed in Section 4, this leveling o� is an intrinsic behavior for broadcast data delivery to clients withshared interests.In Figure 6, FCFS gives the highest average wait in the entire range as expected. FCFS broadcasts the pagesin the order requested, regardless of their popularity, resulting in poor overall bandwidth allocation. LWF and themaximal RxW algorithm provide the best performance (RxW actually does slightly better for loads between 5 and50 requests/tick). The good performance of RxW in this case demonstrates that the RxW heuristic is a reasonablesubstitute for the total waiting time (used by LWF). Recall that the good performance of RxW was predicted bythe analysis of RxW in Section 4, which showed how the RxW heuristic makes use of the square root of the accessprobabilities for bandwidth allocation. For instance, the average waiting time of RxW is 1.98 times better than FCFSat 10 requests/tick and 2.51 times better than FCFS at 1000 requests/tick. As the � parameter is decreased, the averagewait time gradually increases.As we have explained in Section 3.4 as the approximation parameter is decreased we decrease the scheduling overheadat a possible expense of suboptimal decisions. This expense is shown to be very reasonable in Figure 6 when comparedto the gain in terms of scheduling overhead as will be described in Section 5.3.3. In Figure 6, the approximate algorithmwith an � value of 0.90 remains less than 10% worse than the maximal algorithm over the entire range. Even the11

0

1000

2000

3000

4000

5000

6000

7000

1 10 100 1000

 A
ve

ra
ge

 W
ai

t T
im

e
(b

ro
ad

ca
st

 ti
ck

)

Req. Arrival Mean (requests/broadcast tick)

LWF
RxW

RxW.90
RxW.80
RxW.0
FCFS

(a) Average 0

10000

20000

30000

40000

50000

60000

70000

1 10 100 1000

 W
or

st
 C

as
e

W
ai

t T
im

e
(b

ro
ad

ca
st

 ti
ck

)

Req. Arrival Mean (request/broadcast tick)

LWF
RxW

RxW.90
RxW.80
RxW.0
FCFS

(b) Worst CaseFigure 6: Waiting Time Measuresconstant-time RxW .0 pays a limited penalty. The penalty when compared to RxW is 25% at a request rate of 10requests/tick, and 33% at 1000 requests/tick. For all approximations shown, the performance is still about a factor oftwo better than that of FCFS. For instance, at 10 requests/tick FCFS records an average wait of 3190 ticks, which is60% higher compared to RxW.0, and at 1000 requests/tick FCFS records an average of 4962 ticks, which is almost twicecompared RxW.0. Also note that RxW.0 draws the upperbound for the approximations.5.3.2 Worst Case Waiting TimeAlthough worst case performance has mostly been ignored by previous studies, it is an important metric for manyapplications. Figure 6(b) shows the worst case waiting time measured for the same experiment as Figure 6(a). Thatis, we plot the longest wait measured for any request during the simulation run3. As can be seen in the �gure, theordering of the algorithms for worst case behavior is reversed compared to the average case. FCFS has the lowest worstcase waiting time. With FCFS, once a page has been requested, it is guaranteed to be scheduled for broadcast beforeany other page is broadcast twice. Thus, its worst case behavior is bounded by the number of pages (10,000 in thiscase). In contrast, the LWF and RxW algorithms make no such guarantees | popular pages may be broadcast multipletimes while requests for less popular pages wait.In Figure 6(b) we see that the highest worst case waiting times are recorded for LWF and RxW . As � is decreased, theW-list begins to play a more important role in the scheduling process, and thus, the worst case waiting time decreases,similar to FCFS. For � = 0, the worst-case waiting time is within 15% of that of FCFS. Comparing Figures 6(a) and (b),it is apparent that the � parameter provides a exible mechanism for trading-o� worst case and average case waitingtimes for a particular application environment and that it can also be set to balance both concerns reasonably well (e.g.,� = 0:80 in this case). In the next section we show that � can also be used to adjust the overhead of the schedulingdecision process in order improve the scalability of a system.An interesting feature of the worst case result is an unexpected peak in worst case wait which is especially visiblefor LWF and maximal RxW. This peak occurs because the dominant factor in the scheduling decision changes frompopularity to waiting time as the request arrival rate is increased. For example, the RxW algorithm initially favorshot pages when the request arrival rate is low, since there is little di�erence between waiting times at such light loads(everybody waits for a short time) and R is the dominant factor. This behavior results in cold pages accumulatinghigher waiting time than hot pages. As the system becomes more loaded, the server needs to broadcast more pages sothe worst case waiting time of cold pages increases further. Since for both RxW and LWF, the priority of a page isbased on the waiting time of its requests, heavier request rates can lead to higher priorities for cold pages. To explainthis phenomenon, we examine the behavior of RxW for two pages, a hot (popular) page \h" and a cold (less popular)page \c". The priority of the service queue entry for the cold page is:Qc = Rc �Wcwhere Rc and Wc are the total request count and the waiting time for page c, respectively. Incrementing the requestcount by 1 increases this priority by a factor of the waiting time accumulated so far:3Note that in this experiment, the simulation was run two million broadcast ticks, resulting in each page being broadcast at least 24 times.12

Q0c = (Rc + 1) �Wcor Q0c = Qc +WcTherefore for heavy loads where Wc > Wh, an additional request at time t has a greater impact on cold pages than onhot pages, since the marginal increase is determined by the waiting time. As the load is further increased, this relativepriority increase for cold pages results in a decrease in their worst case waiting time. Then, as the waiting time for coldpages decreases, so does its impact on priorities. As a result, the worst case waiting time begins to stabilize, eventuallybecoming independent of the load. Using Equation 12 with �i equal to 1Wi , it can be seen that for RxW , the waitingtime of the coldest page (page N-1) will eventually converge to:WN�1 = Wo +N � 11�PN�2i=0 1Wi [1�q pipN�1] (13)5.3.3 Scheduling Decision Overhead
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 10 100 1000

 A
vg

 N
um

be
r o

f Q
ue

ue
 E

nt
rie

s
Sc

an
ne

d

Req. Arrival Mean (requests/broadcast tick)

LWF
RxW

RxW.90
RxW.80
RxW.0

(a) Varying Request Rate (dbsize=10,000 pages) 0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

10000 50000 100000

 A
vg

 N
um

be
r o

f Q
ue

ue
 E

nt
rie

s
Sc

an
ne

d

Database Size (pages)

LWF
RxW

RxW.90
RxW.80
RxW.0

(b) Varying Database Size (100 requests/tick)Figure 7: Scheduling Decision OverheadAs described previously, a critical aspect of scheduling algorithms for large-scale data broadcasting is scalability. Theprevious section focused on the performance of the algorithms in an ideal setting where there was no overhead for makingscheduling decisions or processing requests. In practice, however, overhead can limit the ability for on-demand systemsto support large-scale applications. All of the algorithms are fairly e�cient in terms of request processing. They di�ersigni�cantly, however, in terms of scheduling overhead. In this section we examine the issue of scheduling overhead inmore detail.Figures 7(a) and (b) show the average number of request queue entries searched each time a scheduling decisionis made (i.e., on each broadcast tick), as the request arrival rate and the database size are increased, respectively.Figure 7(a) shows the scheduling overhead for the experiment in Section 5.3.1. As can be seen in Figure 7(a), LWF isthe highest overhead algorithm for making scheduling decisions, followed by RxW . LWF is an exhaustive algorithm,and thus the scheduling cost is proportional to the number of distinct pages requested by clients. Under heavy requestloads, there is at least one pending request for each page. In terms of scalability in broadcast bandwidth and/or largedatabase size, the scheduling overhead of LWF could easily become a bottleneck. The maximalRxW algorithm, on theother hand, examines signi�cantly fewer queue entries at each scheduling decision. It provides 68% savings at a load of10 requests/tick when compared to LWF. The savings increase for higher request rates; RxW examines 2729 entries onaverage at a load of 1000 requests/tick; a savings of 73%. It is important to note that as was shown in Figures 6(a) and(b), these savings in search complexity come at no cost in responsiveness.The savings provided by RxW 's pruning algorithm, however, are dwarfed by the tremendous savings provided by theapproximate versions of the algorithm. 4 At a load of 1000 requests/tick, RxW .90 and RxW .80 examine 116 and 39entries respectively, for savings of more than 98% and 99% respectively. With � set to 0, the approximate algorithm4Note that FCFS is not shown on these graphs. It is a O(1) scheduling algorithm and so is insensitive to the parameters varied here.13

becomes constant time (two entries are searched on each tick), thereby providing maximum scalability in terms of searchoverhead.In the second experiment shown in Figure 7(b), the request rate is �xed at 100 requests/tick and the database isscaled from 1 to 100,000 pages. As expected the overhead of LWF grows at the highest rate compared to all otheralgorithms and the overhead of maximal RxW grows at a slower rate. The approximation algorithms are observed tobe successful in keeping the overhead orders of magnitude lower, with RxW .0 remaining constant. The practical impactof these results is that the approximate RxW algorithms provide tremendous scalability in terms of request arrival rateand database size. Recall that scheduling overhead also determines scalability in terms of broadcast bandwidth. Higherbroadcast bandwidth results in shorter broadcast ticks, and therefore less time for making scheduling decisions. WithRxW:0 the system can scale for any bandwidth and RxW in general is capable of making fast scheduling decisions acrossa large range of bandwidth, database size and workload intensities.5.4 RobustnessThe previous sections demonstrated the scalability of the approximate RxW approach and its ability to trade o� averagecase and worst case waiting time according to the demands of a particular application. Although approximate RxWdoes not depend on any access probability estimations, it is based on a heuristic that uses a self-adapting threshold fordetermining what item to broadcast. In this section we examine the sensitivity of the various scheduling algorithms tochanges in the workload. The results indicate that the heuristics used do not make the approximate RxW algorithmoverly fragile. We present results for varying the skewness in the access pattern, changes in access probability \hotspots", and changes in workload intensity.5.4.1 Changes in Access Pattern Skew
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 .75 .5 .25 0

 A
ve

ra
ge

 W
ai

t T
im

e
(b

ro
ad

ca
st

 ti
ck

)

Access Skew (theta)

LWF
RxW

RxW.90
RxW.80
RXW.0

FCFS(a) Average Wait 0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 .75 .5 .25 0

 A
vg

 N
um

be
r o

f E
nt

rie
s

Sc
an

ne
d

(/t
ick

)

Access Skew (theta)

LWF
RxW

RxW.90
RxW.80
RxW.0
FCFS(b) Search SpaceFigure 8: Varying Workload SkewThe previous experiments have used the default value for the Zipf parameter �, which creates a highly skewed accesspattern. To study the e�ect of the workload skew, we ran the algorithms with a workload generated by using the defaultsettings of Table 1, but with � varied from 1 to 0.The average waiting time results are shown in Figure 8(a). At � = 0 the access probabilities are uniform, andall algorithms converge to similar performance. As the skew is increased (moving left along the x-axis) all of thealgorithms except FCFS provide improved responsiveness. Since the request rate is kept constant at 100 requests/tickin this experiment, the increased overlap in client interests allows more e�cient use of the broadcast bandwidth for thealgorithms that take popularity into account. FCFS remains relatively stable because, under heavy loads the systemapproaches a state in which there is an entry in the queue for every page of the database. At this point FCFS simplycycles through the pages regardless of the overlap of requests. The arrival rate of 100 requests/tick used here is slightlybelow that level so there is a small increase in the number of service queue entries as the skew is decreased. Thisaccounts for the slight changes seen in FCFS performance here. In terms of the approximations of RxW , the higherapproximation settings improve more with increased skew, as they place additional weight on the overlap of requests.Figure 8(b) shows the number of queue items scanned for each algorithm in the same experiment as Figure 8(a). Thenumber of entries in the service queue slightly increases as the skew is decreased, and therefore LWF scans more entriesper decision. In contrast, all of the RxW variants (except for the constant time RxW:0) scan fewer entries as the skew14

is reduced. With lower skew, the values of the queue entries are much closer to each other, and this helps the pruningalgorithm and the approximations to stop the search much earlier. Thus, as we approach to the uniform case, the searchspace decreases for the RxW algorithm and its approximations.5.4.2 Interest ChangesA key bene�t of the approximate RxW algorithm is its ability to make scheduling decisions based on the current stateof the request queue. We therefore expect the algorithm to be robust to changes in client population interest. In thisexperiment we check the impact of large, fast shifts in user interests, as can arise due to external events in large-scaledata dissemination applications (e.g., news events). We measure the performance of the algorithms as the \hot spot" ofthe Zipf distribution is moved within the database. To model the shift in interest, we use the o�set parameter. Given adatabase size of N where page numbers start from 0, the most popular (or hottest) page for a Zipf distribution is page 0and the coldest is page N-1. With an o�set of K, the probability distribution is shifted by K pages: page K becomes thehottest page and page K-1 becomes the coldest. The simulation parameter interval is used to determine how frequentlythe distribution is shifted. If the shift results in a position beyond the end of the database we wrap around.
0

20

40

60

80

100

120

1 10 100 1000 10000 100000

 D
et

er
io

ra
tio

n
Pe

rc
en

t (
sh

ift
/n

o
sh

ift
)

Shifts per 100000 broadcast ticks

LWF
RxW

RxW.90
RxW.80
RxW.0(a) O�set 100: Gradual Shift 0

20

40

60

80

100

120

1 10 100 1000 10000 100000

 D
et

er
io

ra
tio

n
Pe

rc
en

t (
sh

ift
/n

o
sh

ift
)

Shifts per 100000 broadcast ticks

LWF
RxW

RxW.90
RxW.80
RxW.0

(b) O�set 5000: Change and RestoreFigure 9: Robustness to Frequent Interest ChangesFigures 9(a) and (b) show the average deterioration in average wait time, which is the percentage increase in averagewait time compared to the waiting time experienced for the static case (i.e., no interest shifts). The interval is variedon the x-axis (shown in log scale) from a low value of once per 100,000 ticks to an extreme value of once for each tick.These experiments were run for 1.5 million ticks.Figure 9(a) shows a fairly gradual shift of interest using an o�set of 100 pages (recall that there are 10,000 pagesin the default database). As would be expected, all of the algorithms deteriorate as the distribution changes morefrequently. As the change rate increases the overall access pattern approaches a uniform distribution where, as shown inthe previous experiment, all of the algorithms have the same absolute performance. The key point here, is that despitethe adaptive heuristic used by the approximate RxW algorithm, it is not overly sensitive to shifts in client interest.Figure 9(b) shows that this result also holds for larger shifts of interest (i.e., 5000 pages, or half the database). Thus,the heuristic used by the approximate RxW algorithm allows it to adapt well even to abrupt changes in client interests.5.4.3 Changes in Request Arrival RatesFinally, we examine the sensitivity of the algorithms to changes in the request arrival rate. These changes are intendedto model situations where there is a sharp increase or decrease in the number of clients using the system. The heuristicused by RxW stops searching when it encounters an entry that is within the acceptable range of the self-adjustingthreshold. If no such page is found, then the algorithm acts like the maximal RxW algorithm and searches (usingpruning) until it �nds the maximal RxW -valued entry. We ran several experiments to see if the scheduling decisionoverhead of this heuristic was impacted by workload intensity changes.Figures 10(a) and (b) show the search overhead during a time slice of an execution when the workload intensity isabruptly increased (from 5 to 100 req/tick) or decreased (from 100 to 5 req/tick) respectively at time t (as indicatedon the x-axis). The average number of items searched per broadcast decision is shown for LWF, maximal RxW , andRxW .90. As can be seen in the �gures, even with the abrupt changes in intensity, the overhead of the approximateRxW algorithm remains far below that of the maximal algorithm (the results for RxW .80 are not shown; it is even15

less sensitive than RxW .90). The self-adapting mechanisms used by approximate RxW are able to quickly detect thechange in workload intensity and adjust accordingly.
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

t t+50000 t+100000N
u

m
b

e
r

o
f

Q
u

e
u

e
 I

te
m

s
S

ca
n

n
e

d

Time (broadcast tick)

LWF
RxW

RxW.90

(a) 20 fold Increase 0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

t t+50000 t+100000N
u

m
b

e
r

o
f

Q
u

e
u

e
 I

te
m

s
S

ca
n

n
e

d

Time (broadcast tick)

LWF
RxW

RxW.90

(b) 20 fold DecreaseFigure 10: Impact of Sudden Changes in Arrival Rates6 Related WorkIn this paper we have presented a new algorithm for on-demand scheduling for large scale data broadcast. The directlyrelevant previous work on scheduling algorithms [DAW86, Won88, VH96, ST97] has been addressed in detail in Section2. In addition to this directly related work, there have been a number of related e�orts on other forms of data broadcast.Researchers in the multimedia community have studied scheduling algorithms for Video-On-Demand (VOD) systems.As stated in Section 2 these systems involve broadcast of large, continuous objects (e.g., movies). The large granularityof these systems along with timing requirements that arise due to viewing quality concerns makes the problem di�erentin many ways from the data broadcasting systems we have addressed in this paper. Still, there have been several e�ortson scheduling for VOD systems that are closely related to our work. Dan et al. [DSS94] have suggested an algorithmthat tries to bound the maximum waiting time for popular videos. The algorithm reserves pre-allocated slots for thebroadcast of popular videos while servicing other videos using FCFS. This technique requires determining the popularityof a video, deciding on how many popular videos will be serviced with pre-allocated slots, and the frequency of broadcastfor the popular movies. In comparison, RxW is completely driven by the current state of the request queue, allowingit to adapt quickly to changes in the workload and avoiding problems that arise when estimating access patterns in adynamic environment.The VOD work most closely related to our work is that of Aggarwal et al. [AWY96]. They proposed a schedulingalgorithm that broadcasts the video with the highest R� T value, where R is the number of outstanding requests, andT is the time since the last broadcast of that video. This metric is similar to RxW except that it requires maintaining ahistory of the last broadcast for all videos and requires special initialization for videos that have not yet been broadcast.Because of the large granularity of broadcast ticks for VOD systems Aggarwal et al. did not investigate the e�ciencyor scalability of their scheduling approach. Thus, they did not develop any techniques analogous to the RxW pruningand approximation approaches. Furthermore, they did not investigate the robustness of their approaches to changes inthe client workload.There has also been much recent interest in other areas of data broadcasting for a range of system scenarios andapplications. A taxonomy of data delivery mechanisms (including various forms of broadcast) along with a framework fordescribing dissemination-based systems is provided in [FZ97]. Some recent applications of dissemination-based systemsinclude information dissemination on the Internet [YGM96, BC96], Advanced Traveler Information Systems [SFL96]and dissemination using satellite networks [DP96].Much work has been done on \push-based" systems in which data is broadcast to clients without requiring speci�cclient requests. A number of systems have been proposed for broadcasting data using a periodic push. The DatacycleProject [BGLW92, HGLW87] at Bellcore investigated the notion of using a repetitive broadcast medium for databasestorage and query processing. An early e�ort in information broadcasting, the Boston Community Information Sys-tem (BCIS) is described in [Gif94]. BCIS broadcast news articles and information over an FM channel to clients withpersonal computers specially equipped with radio receivers. The Broadcast Disks project [AFZ95] has investigated a16

number of aspects of data broadcast using periodic push including scheduling and client caching [AAF95] and prefetch-ing [AAF96]. Scheduling techniques from the real-time community have been applied to data broadcast by Baruah andBestavros [BB97]. The issue of combining broadcast push and unicast pull is addressed in [AFZ97, SRB97]. The mobilitygroup at Rutgers [IB94b, IB94a] has done signi�cant work on data broadcasting in mobile environments. A main focusof their work has been to investigate novel ways of indexing in order to reduce power consumption at the mobile clients.Viswanathan [Vis94] has studied algorithms for integrating push and pull for a mobile broadcast environment.7 ConclusionsThis paper has focused on the challenges of large-scale on-demand data broadcast introduced by high bandwidth broad-casting media such as satellite or cable networks. We began by providing a comprehensive set of performance criteriafor scheduling algorithms. These criteria include average and worst case response time, three dimensions of scalability,and robustness to changes in the nature and or intensity of the workload. We then described how previous algorithmsfail in one or more of these criteria.We proposed a scheduling algorithm called RxW , that aims to provide balanced treatment of both hot and cold pagesresulting in a good overall performance. The algorithm combines two previous approaches (called MRF and FCFS),and uses a novel pruning technique to reduce the search space for making broadcast decisions. While such pruning wasshown to be e�ective, it was observed that such an algorithm could still eventually become a bottleneck when supportingvery large applications.Building on speci�c behaviors observed for RxW , we developed an approximate, parameterized variant of RxW thatallows the search space to be reduced further, at the expense of making somewhat less e�cient use of broadcast resources.By varying a single parameter, the algorithm can be tuned from the regular RxW algorithm, to a constant time approachthat provides maximal scalability.We demonstrated the performance, scalability, and robustness of the di�erent RxW variants through an extensive setof performance experiments and sensitivity analyses. We also provided an analytical treatment of the maximal RxWalgorithm that provided insight into its e�cient use of broadcast resources. This analysis demonstrated a key advantageof broadcast data delivery compared to unicast delivery. Namely, that for a user population with overlapping requeststhe expected average waiting time is bounded even if the client population grows in�nitely. This inherent scalability ofbroadcast data delivery makes it an ideal technology for large-scale data dissemination applications.References[AAF95] S. Acharya, R. Alonso, and M. Franklin. Broadcast disks: Data management for asymmetric communicationenvironments. In Proc. of ACM SIGMOD, Santa Cruz, CA, May 1995.[AAF96] S. Acharya, R. Alonso, and M. Franklin. Prefetching from a broadcast disk. In Proc. of the InternationalConference on Data Engineering, New Orleans, LA, February 1996.[AF98] D. Aksoy and M. Franklin. Scheduling for large-scale on-demand data broadcasting. In Proc. of IEEEINFOCOM, San Francisco, CA, March 1998.[AFZ95] S. Acharya, M. Franklin, and S. Zdonik. Dissemination-based data delivery using broadcast disks. IEEEPersonal Communications, 2(6), December 1995.[AFZ97] S. Acharya, M. Franklin, and Stan Zdonik. Balancing push and pull for data broadcast. In Proc. of ACMSIGMOD, Tucson, AZ, May 1997.[AW87] M. H. Ammar and J. W. Wong. On the optimality of cyclic transmissions in teletext systems. IEEETransactions on Communications, 35(1):68{73, December 1987.[AWY96] C. C. Aggarwal, J. L. Wolf, and P. S. Yu. On optimal batching policies for video-on-demand storage servers.In The Third IEEE International Conference on Multimedia Computing and Systems, Hiroshima, Japan,June 1996.[BB97] S. Baruah and A. Bestavros. Pinwheel scheduling for fault-tolerant broadcast disks in real-time databasesystems. In 13th International Conference on Data Engineering, pages 543{551, April 1997.[BC96] A. Bestavros and C. Cunha. Server-initiated document dissemination for the WWW. IEEE Data EngineeringBulletin, 19(3), September 1996. 17

[BGLW92] T. Bowen, G. Gopal, K. Lee, and A. Weinrib. The datacycle architecture. Communications of ACM, 32(12),December 1992.[DAW86] H.D. Dykeman, M. Ammar, and J.W. Wong. Scheduling algorithms for videotex systems under broadcastdelivery. In IEEE International Conference on Communications, pages 1847{1851, Toronto, Canada, 1986.[DP96] S. Dao and B. Perry. Information dissemination in hybrid satellite/terrestrial networks. Data EngineeringBulletin, 19(3), September 1996.[DSS94] A. Dan, D. Sitaram, and P. Shahabuddin. Scheduling policies for an on-demand video server with batching.In Proc. of ACM Multimedia 94, San Francisco, CA, October 1994.[FZ97] M. Franklin and S. Zdonik. A framework for scalable dissemination-based systems. In Proc. of ACMOOPSLA Conference, October 1997.[Gif94] D. Gi�ord. Polychannel systems for mass digital communication. Communications of ACM, 37(10), October1994.[HGLW87] G. Herman, G. Gopal, K. Lee, and A. Weinrib. The Datacycle architecture for very high throughput databasesystems. In Proc. of ACM SIGMOD, San Francisco, CA, May 1987.[IB94a] T. Imielenski and B.R. Badrinath. Energy e�cient indexing on air. In Proc. ACM SIGMOD, Minneapolis,MN, May 1994.[IB94b] T. Imielenski and B.R. Badrinath. Mobile wireles computing: Challenges in data management. Communi-cations of the ACM, 37(10), October 1994.[Kle76] L. Kleinrock. Queueing Systems - Volume II. John Wiley and Sons, 1976.[Knu81] D. Knuth. The art of Computer Programming - Volume III. Addison-Wesley, 1981.[Sch86] H.D. Schwetman. CSIM: A C-based process oriented simulation language. In Proc. of the Winter SimulationConf., pages 387{396, 1986.[SFL96] S. Shekhar, A. Fetterer, and D.R. Liu. Genesis: An approach to data dissemination in advanced travelerinformation sytems. Data Engineering, 19(13), September 1996.[SRB97] K. Stathatos, N. Roussopoulos, and J. S. Baras. Adaptive data broadcast in hybrid networks. the 23rdInternational Conference on Very Large Data Bases, 30(2), September 1997.[ST97] C.J. Su and L. Tassiulas. Broadcast scheduling for information distribution. In Proc. IEEE INFOCOM,1997.[Tri82] K. S. Trivedi. Probability and Statistics with Reliability, Queueing and Computer Application. Prentice-HallInc, 1982.[VH96] N.H. Vaidya and S. Hameed. Data broadcast in asymmetric wireless environments. In Proc. of Workshopon Satellite-based Information Services (WOSBIS), New York, November 1996.[Vis94] S.R. Viswanathan. Publishing in Wireless and Wireline Environments. PhD thesis, Rutgers University, 1994.[Won88] J.W. Wong. Broadcast delivery. Proc. of IEEE, 76(12):1566{1577, December 1988.[YGM96] T. Yan and H. Garcia-Molina. E�cient dissemination of information on the internet. Data Engineering,19(13), September 1996.A Already Queued Request Entries (Lb)In this Appendix, we present the derivation of Equation 6. In Figure 5(a), we have seen that an entry for page c (a lesspopular page) can compete for service if it is created before tc. We try to �nd the value of tc using Equation 4 whichcan be rewritten as, (p�pc(Wb + tc))2 = (p�pb(Wb))2taking square root of each side and factoring out p�, 18

Wb = ppcppb �ppc tcor Wb + tc = [ppbppb �ppc]tc (14)The chances that a page-c entry has been waiting in the queue and that will accumulate enough priority in the intervalWb + tc can be expressed as Lcb = Z 10 �cPft < wc � ppbppb �ppc tgdt (15)where �cdt is the expected number of page-c entries created in the interval (t-td,t) and Pft < wc � �pb�pb��pc tg is theprobability that a request arrived in that interval spends at least t and at most ppbppb�ppc t time units in the service queue.Therefore, Lcb = �c Z 10 [1� P (wc � t)]dt (16)��c(1�rpcpb) Z 10 [1� P (wc � y)])dywith the change of variable y = ppbppb�ppc t. Since the waiting time of page-c requests by isWc = Z 10 [1� P (wc � x)]dx (17)thus, applying Equation 17 on Equation 16:Lcb = �cWcqpcpb if c is less popular than b (18)This completes the case for lower priority entries. Any entry with higher priority will be serviced before page-b andtherefore Lcb = �cWc if c is not less popular than b (19)B Request Entries Created Later (Mb)In this section we provide the derivation of Equation 10. We merely consider the entries for pages that are more popularthan b, i.e. pi > pb. Among those entries, only the ones that are created early enough, namely before ta as shown inFigure 5(b), can actually compete with page-b entry. We can �nd the value of ta using Equation 8 which simpli�es toppa(Wb � ta) = ppb(Wb)thus ta = Wb(1 �r pbpa)The expected number of such page-a entries queued between t = 0 and ta is therefore,Mab = �aWb(1 �q pbpa) if a is more popular than b (20)C Expected Waiting Time When MRF is EmployedWe use a similar time-based priority queuing model for MRF scheduling. However, the priority function in this case issimply de�ned as Qi(t)[MRF] = �pi(t � ti)where �pi is the request rate for page i, and ti is the arrival time of oldest request represented in the queue entry. Theexpected waiting time of a page-b entry, is de�ned by the pages that are going to be broadcast before page b, as statedin Equation 2. When we calculate the expected number of entries that were already queued and will be serviced beforetype-b entry, the components to be summed up for Lb is:Lib = f �iWi pipb if i is less popular than b�iWi otherwise (21)19

where �i is the arrival rate of page-i entry,Wi is the expected waiting time of type-c entry and pi is the access probabilityof page i. The expected number of pages that will be broadcast before page b even though they are initially requestedafter page b is the sum of all: Mib = f �iWb(1� pbpi) if i is more popular than b0 otherwise (22)This leads to the following expected waiting time formula, which is structurally similar to Equation 12:Wb[MRF] = Wo +PNi=b+1 �i pipbWi +Pb�1i=0 �iWi1�Pb�1i=0 �i[1� pbpi] (23)which also explains the scalability property in terms of request arrival rates, with a similar discussion as described inSection 4. Note the appearance of the access probabilities in straight ratio.

20

