Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of In-Mold Assembly Methods for Producing Mesoscale Revolute Joints

    Thumbnail
    View/Open
    Ananthanarayanan_umd_0117E_10353.pdf (10.30Mb)
    No. of downloads: 3570

    Date
    2009
    Author
    Ananthanarayanan, Arvind
    Advisor
    Gupta, Satyandra K
    Metadata
    Show full item record
    Abstract
    In-mold assembly is a promising process for producing articulated joints. It utilizes injection molding to automate assembly operations, which may otherwise require high labor times for production. Since injection molding is a high throughput process, in-mold assembly holds considerable promise in bulk production of assembled parts. However, current in-mold assembly methods cannot be used for manufacturing in-mold assembled products at the mesoscale. This is because the process changes considerably when the sizes of the molded parts are reduced. The premolded component in a mesoscale joint consists of miniature features. Hence, when a high temperature, high pressure polymer melt is injected on top of it, it is susceptible to plastic deformation. Due to presence of a mesoscale premolded component which is susceptible to deformation, traditional shrinkage models alone can not be used to characterize and control the clearances. This dissertation identifies and addresses issues pertaining to in-mold assembly of revolute joints at the mesoscale. First, this dissertation identifies defect modes which are unique to in-mold assembly at the mesoscale. Then it develops mold design templates which can be used for manufacturing in-mold assembled mesoscale revolute joints. Further, issues related to the deformation of the mesoscale premolded component are identified. Two novel mold design solutions to realize mesoscale in-mold assembled revolute joints are presented. The first involves use of mold inserts to constrain the premolded component to inhibit its deformation. The second involves use of a bi-directional flow of the polymer melt over the premolded component to balance the deforming forces experienced by it. Finally, methods to predict and control clearances that would be obtained in mesoscale in-mold assembled revolute joints are presented. To demonstrate the utility of the tools built as part of this research effort, a case study of a miniature robotic application built using mesoscale in-mold assembly methods is presented. This dissertation provides a new approach for manufacturing mesoscale assemblies which can lead to reduction in product cost and create several new product possibilities.
    URI
    http://hdl.handle.net/1903/9318
    Collections
    • Mechanical Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility