Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    QUANTUM NOISE IN OPTICAL PARAMETRIC AMPLIFIERS BASED ON A LOSSY NONLINEAR INTERFEROMETER

    Thumbnail
    View/Open
    Sylla_umd_0117E_10131.pdf (1.474Mb)
    No. of downloads: 2175

    Date
    2009
    Author
    Sylla, Pape Maguette
    Advisor
    Goldhar, Julius
    Metadata
    Show full item record
    Abstract
    Optical Parametric Amplifiers (OPA) have been of wide interest for the past decades due to their potential for low noise amplification and generation of squeezed light. However, the existing OPAs for fiber applications are based on Kerr effect and require from few centimeters to kilometers of fiber for significant gain. In this thesis, I review the principles of phase sensitive amplification and derive the expression for gain of a lossless Kerr medium based Nonlinear Mach-Zehnder Interferometer (NMZI OPA) using a classical physics model . Using quantum optics, I calculate the noise of a lossless Kerr medium based OPA and show that the noise figure can be close to zero. Since in real life a Kerr medium is lossy, using quantum electrodynamics, I derive equations for the evolution of a wave propagating in a lossy Kerr medium such as an optical fiber. I integrate these equations in order to obtain the parametric gain, the noise and the noise figure. I demonstrate that the noise figure has a simple expression as a function of loss coefficient and length of the Kerr medium and that the previously published results by a another research group are incorrect. I also develop a simple expression for the noise figure for high gain parametric amplifiers with distributed loss or gain. In order to enable construction of compact parametric amplifiers I consider using different nonlinear media, in particular a Saturable Absorber (SA) and a Semiconductor Optical Amplifier (SOA). Using published results on the noise from SOA I conclude that that such device would be prohibitively noisy. Therefore, I perform a detailed analysis of noise properties of a SA based parametric amplifier. Using a quantum mechanical model of an atomic 3 level system and the Heisenberg's equations, I analyze the evolution in time of a single mode coherent optical wave interacting with a saturable absorber. I solve the simultaneous differential equations and find the expression for the noise figure of the SA based NMZI OPA. The results show that noise figure is still undesirably high. The source of the noise is identified. A new approach for low noise parametric amplifier operating with short pulses is proposed.
    URI
    http://hdl.handle.net/1903/9256
    Collections
    • Electrical & Computer Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility