Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Motor Control Model Based on Self-organizing Feature Maps

    Thumbnail
    View/Open
    CS-TR-3816.ps (3.313Mb)
    No. of downloads: 372

    Auto-generated copy of CS-TR-3816.ps (1.035Mb)
    No. of downloads: 969

    Date
    1998-10-15
    Author
    Chen, Yinong
    Metadata
    Show full item record
    Abstract
    Self-organizing feature maps have become important neural modeling methods over the last several years. These methods have not only shown great potential in application fields such as motor control, pattern recognition, optimization, etc, but have also provided insights into how mammalian brains are organized. Most past work developing self-organizing features maps has focused on systems with a single map that is solely sensory in nature. This research develops and studies a model which has multiple self-organizing feature maps in a closed-loop control system, and that involves motor output as well as proprioceptive and/or visual sensory input. The model is driven by a simulated arm that moves in 3D space. By applying initial activations at randomly selected motor cortex regions, the neural network model spontaneously self-organizes, and demonstrates the appearance of multiple, reasonably stable motor and proprioceptive sensory maps and their interrelationships to each other. These cortical feature maps capture the mechanical constraints imposed by the model arm. They are aligned in a way consistent with a {\em temporal correlation hypothesis}: temporally correlated features usually cause their corresponding cortical map representations to be spatially correlated. Simulations of variations of the motor control model with visual inputs indicates the formation of visual input maps. These maps are also partially aligned with motor output maps, reflecting the degree of temporal correlations during training. The simultaneous presence of proprioceptive input causes the visual input maps to distinguish pairs of antagonist muscles and to be correlated with only one muscle in each pair. Moreover, some theoretical analysis with a simplified model gives insights into the nature of cortical feature maps and sheds light on the driving force behind map correlations. All of these results have provide more understanding about the organization of cortical feature maps, and how these maps might be used to achieve consistent motor commands based on sensory feedback. (Also cross-referenced as UMIACS-TR-97-56)
    URI
    http://hdl.handle.net/1903/908
    Collections
    • Technical Reports from UMIACS
    • Technical Reports of the Computer Science Department

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility