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Abstract
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Self-organizing feature maps have become important neural modeling methods over the last
several years. These methods have not only shown great potential in application fields such as
motor control, pattern recognition, optimization, etc, but have also provided insights into how
mammalian brains are organized. Most past work developing self-organizing features maps has
focused on systems with a single map that is solely sensory in nature. This research develops and
studies a model which has multiple self-organizing feature maps in a closed-loop control system,
and that involves motor output as well as proprioceptive and/or visual sensory input. The model
is driven by a simulated arm that moves in 3D space.

By applying initial activations at randomly selected motor cortex regions, the neural network
model spontaneously self-organizes, and demonstrates the appearance of multiple, reasonably stable
motor and proprioceptive sensory maps and their interrelationships to each other. These cortical
feature maps capture the mechanical constraints imposed by the model arm. They are aligned in a
way consistent with a temporal correlation hypothesis: temporally correlated features usually cause
their corresponding cortical map representations to be spatially correlated.

Simulations of variations of the motor control model with visual inputs indicates the formation
of visual input maps. These maps are also partially aligned with motor output maps, reflecting
the degree of temporal correlations during training. The simultaneous presence of proprioceptive
input causes the visual input maps to distinguish pairs of antagonist muscles and to be correlated
with only one muscle in each pair. Moreover, some theoretical analysis with a simplified model
gives insights into the nature of cortical feature maps and sheds light on the driving force behind
map correlations. All of these results have provide more understanding about the organization of
cortical feature maps, and how these maps might be used to achieve consistent motor commands
based on sensory feedback.
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Chapter 1

Introduction

Artificial neural network models have become important computational tools in recent years.
On the one hand, these models can be used to solve complicated practical problems
that are difficult for conventional methods. Such problems include optimization problems
[Hopfield & Tank, 1985; Ramanujam & Sadayappan, 1988; Angeniol et al., 1988], control prob-
lems [Kuperstein, 1988; Bullock et al., 1993; Mussa-Ivaldi et al., 1991], pattern reorganization
tasks [Gorman & Sejnowski, 1988; Cun et al., 1989], etc. On the other hand, these models can
also be used to study brain organization and disorders [von der Malsburg, 1973; Linsker, 1986;
Pearson et al., 1987; Grajski & Merzenich, 1990; Sutton et al., 1994; Armentrout et al., 1994;
Weinrich et al., 1994; Reggia et al., 1996].

In this dissertation, a neural network model of motor control will be described, with simulated
map formation both in sensory and motor cortex. The model approximates the closed-loop structure
of mammalian motor control systems while remaining computationally tractable. It is based on a
simplified arm that moves in 3D space. The arm has three pairs of antagonist muscles or muscle
groups receiving motor control information and providing sensory information. Small portions of
sensory and motor cortex corresponding to this arm are simulated. Training is done by supplying
initial random stimulation to the motor cortex area and allowing the system to reach a stable state
in response to each stimulus. After training, multiple cortical feature maps are measured and their
characteristics and interrelationship are studied in order to understand more about motor control.

There are two motivations for the work described here. First, I wanted to determine whether a
closed-loop, multi-layer motor control system could self-organize to form cortical feature maps
that represent the characteristics of the simulated arm, and how these cortical features maps
can be used to achieve consistent motor control. Motor control problems have long been of
great interest to researchers in engineering, mathematics, computer science, and neuroscience
[White & Sofge, 1992; Mel, 1990]. Controlling of arm position in 3D space has been studied in-
tensively [Tarn et al., 1991; Geffin & Furht, 1990; Nicosia et al., 1989], mainly because of its appli-
cation in robotic industries. Many modeling frameworks have been used to tackle this problem:
kinematic versus dynamic, linear versus non-linear, feedback versus non-feedback, real-time ver-
sus trajectory planning, etc. Although great efforts have been made, this problem has not been
solved satisfactorily with respect to efficiency, adaptability, robustness, etc. On the other hand,
the problem of arm positioning is obviously solved successfully by mammalian animals, presum-
ably based in part upon the feature maps existing in the cerebral cortex, However, the function of
primary motor cortex (MI) in mammalian animals is currently not well understood. It is generally
believed that MI makes use of feedback information via afferent sensory pathways to carry out



motor tasks. In particular, proprioceptive inputs play an important role in the formation of motor
cortex outputs. Here proprioceptive inputs refer to sensory inputs from receptors inside muscles or
tendons that reports the length and tension of muscles. Visual inputs are of course also important
sensory feedbacks. How this kind of feedback information is processed and used by MI neurons is
an important issue in identifying the function of MI. Computational neural network models can be
trained to form feature maps used for motor control. Such a study will help us gain insights into
the organization of primary motor cortex, and may generate new concepts and methods for use in
automatic control systems.

The second motivation for this work was to investigate how multiple cortical feature maps
simultaneously present in a region of sensorimotor cortex relate to each other. For example, in
primary sensory cortex one can ask how the maps of muscle length (stretch) and muscle tension
overlap or interrelate. In primary motor cortex, one can ask how both of these sensory maps relate
to the motor output maps, and how maps of cortical activation of different muscles interact. In
particular, I examined the following temporal correlation hypothesis: when multiple feature maps
exist in the same region of cortex, features that are temporally correlated will appear in map regions
that are spatially correlated.

The simulation results indicates that this closed loop system is capable of self-organizing during
unsupervised learning. The motor output map appears to possess some properties seen in mam-
malian motor cortex, such as a distributed, multifocal representation of individual muscle groups.
Thus, although this model is a substantial simplification of the corresponding biological system, it
captures some fundamental principles underlying map formation in mammalian motor cortex. Also,
these cortical feature maps were aligned in a way that reflect the mechanical constraints imposed
by the model arm. For example, the sensory cortex map of the tension of a particular muscle group
was found to align with the sensory cortex map of the length (stretch) of its antagonist muscle.
In primary motor cortex, the output map of a muscle was found to align with the tension input
map of the same muscle and the length input map of its antagonist muscle. With the presence of
visual inputs, some post-training visual inputs maps were partially aligned with some motor output
maps. Quantitative measurement indicated that the degree of alignment between two maps were
monotonically related to the degree of temporal correlation between two features, thus verified the
above hypothesis. We believe that such correlations are important for cortical motor neurons to
consistently transform sensory input into motor output.

In summary, the primary contribution of this research are:

e Demonstrating that stable cortical feature map will form under unsupervised learning in a
closed loop, multi-layered system.

e Showing that multiple cortical features maps in sensory and motor cortex align in a way
reflecting temporal correlations due to the mechanical constraints of the model arm.

¢ Demonstrating that the alignment of visual input maps with motor output maps also reflect
the temporal correlation between features during training process.

e Providing analysis of activation patterns in cortical feature maps and establishing the under-
lying principles of correlated and anti-correlated map features.

The rest of this dissertation is organized as follows. In Chapter 2, some background about map
formation and motor control model will be given. Chapter 3 describes the structure of the motor



control model in detail. In Chapters 4 to 6, simulation results in three variations of motor control
models are reported. Chapter 4 is about the model with proprioceptive input only. Chapter 5
uses visual input only instead of proprioceptive input. Chapter 6 gives the simulation results for
the model with combined proprioceptive and visual input. In Chapter 7, some theoretical analysis
concerning map formation and the interrelationships between map features is done using a simplified
model. Chapter 8 summarizes the conclusions of this work and future directions for research.



Chapter 2

Background

This section describes past work on map formation in general, the principles of underlying map
formation, and some previous motor control models using feature maps.

2.1 General Information on Self-Organizing Maps

Work on self-organizing maps, both in computer science and in computational neuroscience, was
initially motivated by the observation that such maps are widely observed in mammalian nervous
systems [Penfield & Rasmussen, 1950; Hubel & Wiesel, 1962]. The term maps here refers to the
order-preserving representations in the cortices of mammalian systems of the outside sensory or
motor control space. There are mainly two classes of maps: topographic maps and feature maps
(the latter also being called computational maps). The term topographic map refers to the fact that
the sensory surface or motor control space is represented in cortices in topographic order. The term
feature map means neurons in sensory or motor cortices repond to certain features of the sensory
or motor space.

For topographic maps, the similarity of input patterns is measured in terms of geometric prox-
imity of the input patterns. Therefore the cortex is a direct reflection of the spatial ordering of the
outside world it represents. For example, for primary somatosensory cortex (abbreviated SI), there
is a representation of the skin surface across the cortex [Freeman, 1979]. Every region of the body
surface has a corresponding area in SI, and adjacent regions of the body generally have adjacent
corresponding areas in SI. For primary motor cortex (called MI), there is a similar topologically
preserved mapping from muscles of the body to the cortex (Fig. 2.1), although this is combined
with feature maps at the detailed level, and is more controversial [Donoghue et al., 1992].

On the other hand, for feature maps the similarity of input patterns is measured in terms of
functional similarity of input patterns, for any particular function. Primary visual cortex (called VI)
is an example of a feature map [Hubel & Wiesel, 1959; Hubel & Wiesel, 1962]. Many neurons in
VI respond maximally to input stimuli (such as lines) that have particular orientations. Therefore
a transformation is needed to change the information of size and position of input signals into
orientation information. Input patterns with similar orientations, rather than similar location, are
said to be similar. Many of the details of the mechanisms of this transformation of information in
the brain are still unknown [Hubel & Wiesel, 1962; Weyand et al., 1986; Chapman et al., 1991].
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Figure 2.1: Topographic maps in human somatosensory and motor cortex. Fach part of the human
body is represented by corresponding area in sensory and motor cortex in a topographic preserved
fashion. Stimulating a particular body surface area will activate corresponding somatosensory
cortex region. And activation of a motor cortex region will cause muscle contraction in the corre-
sponding area. (Picture taken from “The Brain”, A Scientific American Book), 1979

2.1.1 Using Maps for Computational Purposes

Map formation can be used for computational purposes. Von der Malsburg did some of the
first work on simulating map formation [von der Malsburg, 1973]. Kohonen proposed a computa-
tional model which can be used for feature map map formation [Kohonen, 1982; Kohonen, 1995].
Although it is biologically unrealistic, it serves as a way to organize information.

In Kohonen’s model, there is a network consisting of a simple input layer and a simple output
layer, which are fully connected. Usually both layers are two-dimensional. The input layer receives
input patterns, which are viewed as being ordered according to some definition. The output layer
has lateral connections and is ordered naturally by means of the relationship of neighboring nodes.
The purpose of these lateral connections is to insure that similar input patterns will generate similar
responses in the output layer. For this to occur, a measurement of similarity of input patterns must
be defined. Usually, the similarity of input patterns, which are represented as vectors, is measured
by the inner product [Kohonen, 1989].

The activation rule of Kohonen’s model is based on the inner product of an input pattern and
the incoming weight vector: a; = 2?21 w;;in;. Here a; is the activation of output node ¢, w;; is
the weight connecting input node j and the output node 7, in; is the j'th component of the input



pattern. According to the activation rule, the node in the output layer which has an incoming
weight vector most similar to the input pattern tends to get the highest activation (although some
normalization procedures may result in distortion [Sutton & Reggia, 1994]). The learning rule is
such that when a node matches an input pattern, its incoming weight vector is adjusted to be more
similar to the input pattern, so that next time that same input pattern occurs this node is more
likely to respond. For the winning node ¢ (i.e., the most highly activated node), its learning rule
is: Awe; = n(in; — we;) for all 7 = 1...n. Here 7 is a constant controlling learning speed.

Besides the winning node ¢, its neighboring nodes are also allowed to learn from this input
pattern, so that neighboring nodes will develop similar weight vectors as node ¢, and therefore have
similar responses to input patterns. The neighborhood is defined to be the region within which
nodes can send activation to each other via excitatory lateral connections. The neighboring nodes
use the same learning rule as node ¢. In Kohonen’s model, the initial size of the neighborhood is
defined to be the entire output layer. Therefore all the incoming weight vectors are adjusted to
become similar and the map is conceptually compressed in the center of the region. By gradually
decreasing the neighborhood region, the output map can be expanded smoothly. Kohonen’s model
can be used to represent information in an efficient way so that similar input information will
activate nodes adjacent each other. This simple map can also be used to represent information at
different abstract levels.

Kohonen’s model on map formation has been used in many computational applications. Some
examples: to develop a speech recognition device that can recognize a large vocabulary of isolated
words by their trajectories across a phonetic map surface [Kohonen, 1987], to solve optimization
problems such as the traveling salesman problem (TSP) [Angeniol et al., 1988], and for the motor
control problem described above [Kuperstein, 1988; Ritter et al., 1989; Walter & Schulten, 1993].

2.1.2 Biological Modeling Using Maps

Computational models of map formation not only can be useful computational tools, they
also can be used to simulate biological systems. One example is von der Malsburg’s computa-
tional model in simulating the orientation activated neurons in mammalian primary visual cor-
tex [von der Malsburg, 1973]. The occurrence of orientation sensitive cells in the primary visual
cortex makes it different from other area in cortex. The mechanism underlying such an organi-
zation has been investigated by many scientists since their discovery[Hubel & Wiesel, 1963]. Von
der Malsburg described the first computational model of primary visual cortex showing the self-
organization of orientation sensitive cells via learning [von der Malsburg, 1973]. Other models of
visual cortex, such as those modeling the ocular dominance columns in VI, have also been developed
[Miller et al., 1989; Tanaka, 1991]. These models used both mathematical analysis and computer
simulations to analyze conditions under which the ocular dominance columns occur, and to explain
the resultant ocular dominance columns patterns.

In Kohonen’s model as described above, the winning node is picked globally, and the neigh-
borhood size changes dramatically during the training process. Moreover, the input layer is fully
connected to the output layer. All of these characteristics are biologically implausible. Thus, in
many biological modeling applications, researchers have adopted different architectures. These
models usually have limited connections between input and output layers and restricted areas of
lateral connections. One of these models was motivated by the observation of feature map forma-
tion in the mammalian primary visual cortex before any visual experiences [Linsker, 1986]. This



model is a multi-layer feed forward network, with overlapped forward projections and limited lateral
connectivities. Linsker demonstrated that, with a simple Hebb-type learning rule, a network can
self-organize to form orientation selective columns based on purely random activation at the input
layer. This is different from the models previously discussed in this section, which use co-related
activation patterns as inputs. It means that the necessary connections and some of the underlying
updating principles, instead of the feature inputs, are sufflicient to account for the map formation
in the cortex.

Pearson et al. proposed a model of topographic map formation that avoided many of the limi-
tations of Kohonen’s model [Pearson et al., 1987]. In this model, each input node was connected to
its corresponding node in the output layer and its surrounding nodes, forming a coarse topographic
map at the beginning of training; the receptive fields of the output nodes overlapped extensively.
The nodes in the output layer had local internal connections. The training was done by supplying
patched activation patterns in the input layer. During training, this coarse topographic map was
refined and the receptive fields became smaller and more concentrated. This model is biologically
plausible not only in the sense of local interactions of neurons, but also in that it shows effective
reorganization after a change in input patterns.

Grajski and Merzenich proposed another model simulating map formation in somatosensory
cortex [Grajski & Merzenich, 1990]. This model is similar to Pearson’s model in term of connec-
tivity and the training method, except an intermediate layer was added to the network to simulate
subcortical neurons. This layer is used to increase the area of projection from the input layer to the
cortical layer and to allow the subcortical layer to dynamically affect the cortical inputs. Grajski’s
model has shown refinement of the initially coarse topographic map during training as well as the
map reorganization due to repetitive stimulation and lesioning. This model is an improvement
when compared with Pearson’s model in that it maintains the inverse magnification rule during
map reorganization,' and is therefore more plausible in simulating map formation in mammalian
cortex.

A model using competitive distribution of activation to simulate topographic map formation
in somatosensory cortex (refered to as the SI model in subsequent discussion) has also been devel-
oped. The structure of this model is quite similar to the one used in [Pearson et al., 1987]. In the
SI model, each input node is connected to its corresponding output node and that node’s neighbors
within a certain distance, forming an initial coarse topographic map from the input layer to output
layer. The coarse topographic map at the beginning can be regarded as genetically predetermined.
The training pattern is a hexagonal activation patch of radius of one or two, uniformly distributed
over the entire input layer. It has been shown that, after training, the coarse topographic map be-
comes refined. The receptive fields become more regular; and the incoming weight vectors becomes
Gaussian shape in distribution [Sutton et al., 1994; Armentrout et al., 1994].

The competitive distribution of activation can also be used in models forming feature maps.
One such models has a structure similar to von der Malsburg’s model, and is trained with the same
set of input patterns [Weinrich et al., 1994]. The training of this model produced results similar
to those in von der Malsburg’s model, such as formation of clusters, and decrease of nodes tuned
to multiple orientations. The only difference observed was that the competitive activation model
produced smaller, more activated clusters than von der Malsburg’s model.

!The inverse magnification rule, which is observed in biological experiments [Jenkins et al., 1990], states that there
is an inverse relationship between cortical magnification and receptive field size.



Models using competitive distribution of activation have demonstrated the ability to reorga-
nize after focal map damage. It has been shown that the above SI model exhibits spontaneous
map reorganization in response to a cortical lesion [Sutton et al., 1994], unlike some earlier models
[Grajski & Merzenich, 1990]. The model exhibits a two-phase reorganization process. Immediately
after the lesion, the receptive fields of cortical nodes adjoining the lesioned area shift towards the
lesioned area. This shift is caused by the dynamic redistribution of activation due to the competi-
tive distribution of activation. After continued training following a lesion, more of the finger region
initially represented by the lesioned region is now represented by nodes in the surrounding region.
This second-phase change is caused by the shift of weight vectors and is triggered by the first-phase
of map reorganization [Sutton et al., 1994].

2.2 Cortical Lateral Inhibition

A stimulus to cortex via sensory pathways has the characteristics of an excitatory area sur-
rounded by an inhibitory region. This phenomenon can be observed in somatosensory cortex as
well as visual cortex [Mountcastle, 1978]. It also can be produced by direct activation of a small
region in neocortex [Hess et al., 1975; Gilbert, 1985]. The activation pattern in the primate cortex
is as follows:

o A central excitatory region with radius of 50 to 100 um.

¢ An inhibitory region surrounding the central excitatory region reaching up to a radius of 200
to 500 pm.

A weaker excitatory region surrounding the inhibitory penumbra reaching up to a radius of several
centimeters may also be observed. This activation pattern is usually refered to as a “Mexican
Hat” pattern (Fig. 2.2). This phenomenon is usually attributed to the lateral interactions between
cortical neurons.

In the traditional view, the inhibitory part of the “Mexican Hat” activation pattern is at-
tributed to direct lateral inhibitory synaptic connections. According to this view, when a cortical
site is activated, it suppresses activation of nearby cortex because of its direct or indirect lateral
inhibitory synaptic connections to nearby cortex (Fig. 2.3). Accordingly, most past computational
models of map formation have used this kind of mechanism to produce central excitatory, peristim-
ulus inhibitory activation pattern [Kohonen, 1989; Pearson et al., 1987; von der Malsburg, 1973].
However, the circuitry in neocortex is poorly understood at present. Some of the observations are
difficult to reconcile with the inhibitory lateral connection scheme. For example, most inhibitory
links in cortex are vertical or intracolumnal rather than lateral. The lateral inhibitory connections
are sparse and appear to be mismatched to the distribution of peristimulus inhibition. Such facts
have led to the investigation of alternative mechanisms underlying the “Mexican Hat” activation
pattern, such as competitive distribution of activation [Reggia et al., 1992].

Models using competitive distribution of activation have been shown to be quite useful in
modeling neurophysiological phenomena. Competitive distribution of activation has been success-
fully used for feature map formation as well as topographic map formation [Sutton et al., 1994;
Armentrout et al., 1994; Cho & Reggia, 1994; Weinrich et al., 1994]. These models provide for
peristimulus inhibition without lateral inhibitory connections. The main idea of competitive dis-
tribution of activation is that the spread of activation is based on not only the connection strength



Figure 2.2: “Mexican Hat” like activation pattern: the two dimensional x-y plane represents the
extension of cortical surface, the height (z axis) represents the level of activation.

to the destination neurons, but also the activation level of those destination neurons. Destination
neurons with higher activation levels tend to receive more activation than the ones with lower ac-
tivation levels. Therefore, populations of neurons (e.g., cortical columns) with different activations
tend to “compete” for activation. Formally, this mechanism is implemented using a formula such
as:

a;(t)wj;

outj;(t) = S an(wn a;(t) (2.1)
where out;;(t) is the activation that node j receives from node ¢, and k ranges over all the nodes
to which node ¢ sends activation (Fig. 2.4). In this formula, the activation that node j receives
from node 7 is decided not only by the connection strength w;;, but also by the activation of node
j as well as other nodes to which node ¢ send connections. If node j has a higher activation level
than node k, then it tends to gain more input from node i. Since total activation from node ¢ is
fixed at time ¢, other nodes k will receive less input activation from node j. This kind of inhibition
is sometimes called virtual inhibition. Competitive activation was used in several of the models of
map formation described above, and generally has produced results that are qualitatively the same
as lateral inhibitory links when simulating map formation.
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Figure 2.3: A schematic diagram of lateral connections to produce central excitatory, peristimulus
inhibitory activation patterns. Other implementation may have the same effect.

2.3 Feature Maps for Motor Control

In this section, some past computational models of motor control using feature maps are dis-
cussed. First, a class of models of motor control developed by others using visual input information
is described. Second, a feature map model of proprioceptive sensory afferents developed at the
University of Maryland is introduced. This latter model, the first computational model of proprio-
ceptive cortex?, is the starting point for my efforts to develop a motor control model incorporating
proprioceptive sensory information.

2.3.1 Modeling of Motor Cortex: Visuo-motor-coordination

Several computational models of motor cortex have focused on feature map formation for
visuo-motor coordination [Kuperstein, 1988; Walter & Schulten, 1993; Ritter et al., 1989], mainly
because of its application potential in industrial robotics. Visual input is typically fed to a single
layer network which directly produces motor output. The motor output directs the movement of a
robot arm and thus changes visual input. Through training, visuo-motor coordination is achieved.
Other motor control models which invoke a more complex architecture or more biologically plausible
ingredients were also proposed [Mel, 1988; Mel, 1990; Burnod et al., 1992].

Ritter et al. proposed an algorithm of visuo-motor coordination to control a robotic arm
[Ritter et al., 1989]. In this model, visual input is obtained from two cameras. The input pattern
is two pairs of coordinates, reflecting the hand position observed by the cameras. The output is
composed of joint angles and other relevant elements. Between the input layer and output layer,
there is a neural network layer, connected like the one in Kohonen’s model, doing the information

As noted earlier, proprioception refers to sensory input concerning muscle tension, muscle length, joint position,
etc.
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Figure 2.4: Competitive activation mechanism: node ¢ sends activation to nodes j and other nodes
k (maybe more than one). The distribution of activation is based not only on the weight from
nodes ¢ to nodes 7 and k, but also on the activation level of nodes 7 and nodes k.

processing. For each node in this layer, there is an incoming weight vector from the input layer,
and an outgoing weight vector to the output layer. The incoming vector is adjusted towards the
input pattern. The outgoing vector is adjusted towards an estimated position generated from
the movement error viewed by two cameras. The learning algorithm is thus called an “extended
self-organizing feature map algorithm”. This algorithm is similar to the Kohonon’s “self-organizing
feature map algorithm”, except that, instead of only winner node updates weights, the learning rule
in this model is set such that in each learning step, every node learns to adjust its incoming weight
vector toward the input pattern, but the winning node learns most, and increasingly distant nodes
learn progressively less. The model is trained to learn arm kinematics by finding the appropriate
joint angles for each target location, and to learn arm dynamics by generating appropriate joint
torques necessary to accelerate the end effector of the robot arm from a given position to a specified
velocity. It was shown that both arm kinematics and arm dynamics can be learned in this model.

Walter and Schulten reported the implementation of two learning algorithms for visuo-motor
control of an industrial robot (PUMA 562) [Walter & Schulten, 1993]. Their system also has two
cameras providing visual information to the neural network, and a multi-joint arm controlled by
the output commands of the neural network. The task learned by the robot is to position its end
effector at certain positions in the space. The first learning algorithm they used is the “extended
self-organizing feature map algorithm”, described above. The second algorithm, the “neural gas”
algorithm [Martinetz & Schulten, 1991], is similar to the first in the sense that all the nodes are
allowed to learn for each learning step, with different amounts. However, in the “neural gas”
algorithm, the network layer has no topologic relations. There are no lateral connections in this
layer. The degree of neighborhood is not defined by the geometric distance, but dynamically by
the similarity of the incoming weight vectors to the input vectors. The node with incoming weight
vector most similar to the input vector will learn most. Other nodes learn less, based on their
ranks in the ordered sequence of similarity, with an exponentially decreased amount of adjustment.
The “neural gas” algorithm defines the neighborhood relationship dynamically. Thus it allows a
more flexible topology, especially when the spatial relationship is unknown or inhomogeneous. It
has been shown that both algorithms can be used in visuo-motor control of an industrial robot
[Walter & Schulten, 1993], and that a topology preserving map forms after training. With only
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3000 learning steps, the system is able to position its end effector with a precision of 0.1% of the
linear dimension of work space.

Kuperstein proposed another model using a self-organized neural network to achieve hand-eye
coordination [Kuperstein, 1988]. The task performed is to position a simulated robot arm at a
certain location in space, and with a certain orientation. This model is more complicated than the
previously discussed models doing similar tasks. The robot not only has camera-like eyes providing
visual input, but also can adjust the orientation of the eyes with different tensions of eye muscles.
Therefore, in order to obtain a correct assessment of spatial locations, the visual information as well
as the activations of eye muscles are necessary inputs to the network. The training of the network
is as follows. Self-produced motor signals are first generated to move the arm to certain locations in
space. The images captured by the two “eyes” are combined to produce visual maps. The muscle
activations of the two “eyes” are also combined to produce gaze maps. The visual maps and gaze
maps are then combined to compute the necessary motor signal. These computered motor signals
are then compared with the initially generated motor signals. The learning rule is set such that the
differences between the initially random motor signals and the computed motor signals from the
visual feedback information are minimized. Computer simulations showed that, after training, the
model is capable of performing the task with an average position error of 4% of the arm’s length
and with an average orientation error of 4°.

Another motor control system which involves multiple sensory and motor control layers was
proposed and implemented by Mel [Mel, 1988; Mel, 1990]. This system, called robot Murphy, was
designed to control a robot arm to grab an object in a 2D plane, with a visual input provided
by a color video camera. The control part of Murphy consists of four layers of neuron-like units:
visual-field population, hand-velocity population, joint-angle population and joint-velocity popula-
tion. The video camera provides Murphy with visual information (hand positions, target positions,
obstacles etc.) and hand-velocity information. The joint-angle and joint-velocity layers were used
to control the motors in the robot arm joints. All four layers were initially coarse coded, with
Gaussian shape receptive and/or projective fields. A learning algorithm, Sigma-Pi learning, was
used to avoid introducing non-linear intermediate units. Murphy was trained to learn both for-
ward kinematics from the joint-angle layer to visual-field layer and the inverse kinematics from
hand-velocity layer to joint-velocity layer. The redundant control dimensions of robot arm enable
Murphy to plan multiple routes to a target and could successfully perform target reaching tasks
while avoiding obstacles.

The above motor control models have emphasized reaching tasks, although some biological
structures were borrowed to achieve this goal. On the other hand, recent developments in neuro-
physiology have motivated the building of computational models that can be used to explain bio-
logical results. One recent discovery about the motor cortex is its use of directional tuned neurons
and population coding [Georgopoulos et al., 1986]. Some computational models using directionally
tuned units to achieve motor control tasks have also been developed [Burnod et al., 1992]. These
models emphasize the role that directionally tuned neurons play in the motor cortex, although
motor control tasks can also be performed. In [Burnod et al., 1992], a motor control model was
described. This model combines visual and somatic inputs in the sensory cortex layer and gen-
erates motor commands in the motor cortex layer. In this model, each processing unit in a layer
corresponds to a cortical column rather than to an individual neuron. Each layer can be further
divided into sublayers. In the input layer, visual and somatic input is received in different sublayers.
Simple Hebbian learning was applied for both intralayer and interlayer connection learning, while
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spontaneous movements were used during learning. After training, the motor units were tuned
to preferred directions which rotate with initial arm position, while the population vectors were
parallel to trajectories. This is consistent with neurophysiological results.

These previous neural network motor control models, although having exhibited substantial
success in fulfilling the goals of investigators, have some limitations, especially when viewed from
a biological perspective. In most models, motor and visual sensory functions are combined into
one network layer, and there is usually no proprioceptive feedback. These facts plus the unrealistic
connectivity are biological implausible. These models do not tell us much about the maps inside
the brain, especially the primary motor cortex. The model proposed in [Burnod et al., 1992] is
more biologically realistic in structure. It also includes proprioceptive input. However, the propri-
oceptive information was given in the form of a 3D vector representing arm position. No realistic
proprioceptive afferents were modeled as in the research described here. Therefore this model still
lacks plausibility in proprioceptive feature map formation, and in how the sensory feature map
affects the feature map in motor cortex and motor behavior. The model that I propose here is
different from these previous motor control models in that it accounts for the biological feasibility
as well as the motor control tasks. This model tries to simulate the structure and behavior of the
mammalian sensory motor system. In this model, realistic (although simplified) sensory and motor
control feature maps are simulated and their relationship is investigated. Thus the model serves as
a tool to study the cortical activity of biological systems, as well as exploring a new approach to
motor control. In addition, we use the model to examine how multiple simultaneously present fea-
ture maps align with each other, something which has not been done previously. Based on the fact
that biological motor control systems are superior to any artificial motor control system, I believe
that the improvement of artificial systems may be possible when deeper knowledge of mammalian
cortex is obtained.

2.3.2 Proprioceptive Cortex Map

A model simulating map formation in primary sensory cortex based on proprioceptive input
from an arm has been implemented in our research group [Cho et al., 1993]. This model (refered
to as the PI model) is motivated by the fact that proprioceptive input plays an important role in
map formation in the brain and in the coordination of motor control [Asanuma, 1989]. The motor
control model described in this dissertation incorporates the basic concepts of the PI model as one
component.

In this model, there is a simulated model arm that moves in a three dimensional space. Six
generic muscles, controlling the movement of the arm, also provide proprioceptive information
about the length and tension of each muscle. The details of the arm model will be described in the
next chapter.

The structure of the network is illustrated in Fig. 2.5. Like most previous models of map
formation, there is a single input layer and a single output layer. The length and tension of the six
muscles serves as the proprioceptive input in this network. The proprioceptive cortex layer (also
refered to as PI layer) consists of 400 nodes, with hexagonal tessellation. Each cortical node is
connected to its 6 neighbors. The connection from proprioceptive input layer to cortical layer is
fully connected.

The methods used in this network are competitive distribution of activation along with com-
petitive learning, which will be described in detail later. The weights from arm proprioceptive
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Figure 2.5: Network architecture: the input layer has 12 nodes representing lengths and tensions
of 6 muscles; The cortical layer has 400 nodes with lateral connection of radius 1. The input layer
and the cortical layer are fully connected.

input layer to cortical layer were initialized randomly, forming a poorly defined map. Studies have
focused on examing map formation in PI after being trained with proprioceptive input based on
the random movement of the arm [Cho & Reggia, 1994]. The training procedure in each learning
cycle is:

e generate six random values representing muscle activations to set the arm position;
e compute the proprioceptive input based on the arm position;
e send activation from sensory neurons to the cortical layer; and

e train the network connections from proprioceptive input layer to cortical layer, using com-
petitive learning method.

After training, the following results were obtained:

¢ Most proprioceptive cortex nodes were tuned to the length or tension of a particular muscle.
Nodes tuned to the same muscle length or tension tended to group together to form clusters.
The size of clusters became more uniformed after training. Moreover, the group of nodes
tuned to the lengths of antagonist muscles tended to push apart from each other, reflecting
the mechanical constraints imposed by the movement of the arm (antagonist muscles can not
be stretched simultaneously, and thus only one tends to be active at any time).

¢ Among the nodes which were tuned to multiple inputs, the number of nodes which were tuned
to implausible input pairs decreased to zero and the number of nodes tuned to plausible input
pairs increased significantly as the result of training.
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e A gpatial map of hand positions was also formed.

The above results show that, after training, feature maps formed in proprioceptive cortex layer.
These maps catched some characteristics of the model arm implicitly contained in the input pat-
terns. Varying model details resulted in variations of map details in predictable ways.

This proprioceptive model provided us with an initial understanding of proprioceptive feature
maps, and thus it represents preliminary work for the research described in this dissertation. How-
ever, the PI model is limited in the sense that it has no motor cortex involved. Therefore, all the
motor output (or muscle activation) is hypothetical or artificial. Also it does not have a closed-loop
architecture in which the sensory feedback could alter motor output. The PI model did provide
a starting point from which to build a more complicated and biologically plausible motor control
model.
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Chapter 3

The Motor Control Model

This chapter describes in detail the motor control model used in this research, including the arm
model, network structure, activation and learning rules, and training method. The methods used
to measure the resultant cortical feature maps are also described.

This motor control model simulates the closed-loop path of information flow in the nervous
system. In the first stage of the simulations, only proprioceptive input is used as sensory feedbacks.
Later, visual inputs (or combined proprioceptive inputs and visual inputs) are used as sensory
feedback. Fig. 3.1 gives out a schematic diagram of the closed-loop motor system involving just
proprioceptive input. The activations of muscles direct arm movements. Proprioceptive information
about the muscles is then fed into the primary sensory cortex, which supplies this information to
primary motor cortex, thus influencing the motor output. The closed-loop system has the advantage
of “knowing” the results of certain motor commands from sensory feedback and adjusting motor
output based on such feedback.

3.1 The Arm Model

The model arm simulated here is a significant simplification of biological reality. It is not a
neural model. The model arm has an upper arm and a lower arm, connected by the elbow, that
moves in a three dimensional space. There are six generic arm muscles or muscles groups, with one
pair of muscles groups (extensor and flexor) controlling the movement of the lower arm, and two
pairs of muscles groups (extensor and flexor, abductor and adductor) controlling the movement of
the upper arm (Fig. 3.2).

For a particular set of activation values of agonist and antagonist muscles, the corresponding
joint is positioned at a particular angle. Therefore the length of each muscle is determined. Biolog-
ically, this kind of length information is measured by the receptors in muscle spindles embedded in
parallel with muscle fibers. The tension information of muscles is measured by receptors in Golgi
tendon organs. The length and tension information of muscles is then transmitted to proprioceptive
cortex in SI (Brodmann area 3a). I will refer this primary proprioceptive cortex area as Pl in later
discussions.

Fig. 3.3 shows a generic joint where appendage OP of length [ is moved 180° around the axis
which is perpendicular to the plane AOP and passes through the origin O. Thus, movements of
the endpoint of the appendage, Q, define a semicircle APB. The movement of appendage OP is
controlled by changing the lengths of the muscles [1(X Z) and l3(Y 7). Both muscles are attached
to the mid-point of the appendage, Z (i.e., OZ = [/2) on one hand. Also muscle X Z is attached
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Figure 3.1: Schematic diagram of the closed loop motor system: the model arm, directed by motor
neuron activity, supplies proprioceptive information to proprioceptive cortex (PI). This propriocep-
tive information then influences neuron activities in the primary motor cortex, therefore changing
the motor output commands.

to point X and muscle Y Z to point Y, respectively, which are located distance {/2 apart from the
origin on opposite sides (i.e., OX = OY = [/2).

For convenience, in our model the resting position of an appendage is defined as perpendicular
to the axis to which the pair of muscles are attached (i.e., OPF). Joint angle # denotes the angle
between this resting position (OP) and the current position of the limb (OQ). We define the joint
angle as as a function of difference between the input activation level of agonist and antagonist
muscles which control the joint.

s

0= 5 (J(inag) = f(inant)) (3.1)

where 6 ranges from [— 73, J]; f(ingg) and f(ing,) are the functions of activation of agonist and
antagonist muscles, representing any of the three pairs of muscles. Function f maps muscle ac-
tivations into values ranging from 0 to 1 so that appropriate joint angles can be calculated. In
the model described in this dissertation, f is the identity function because the network parameter
setting has ensured the activation of muscle activations to be within the range of 0 to 1.

The length of a muscle can be easily derived from the joint angle, according to Fig. 3.3.
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Figure 3.2: Model arm. Three pairs of muscles (indicated by curves) control the movement of upper
arm and lower arm (indicated by bold line segments). Two pairs of antagonist muscles control the
upper arm, while the third pair of antagonist muscles controls the lower arm.
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where [ is a constant representing length of an appendage.

To see this, cconsider AOY Z, an isosceles triangle with OY = OZ = [/2. Let W be on Y Z
such that OW LY Z, so AOWY is a right triangle with

1, =

LYy ==(=-40 A
ow = (5 -6 (3.4

and ;

YW = 2. :
: (35)
From Eqs. 3.4 and 3.5, we get
1 7 Yw 12/2
GO =5y = ap Tk



Figure 3.3: Generic joint

thus, we have Eq. 3.3.
Now consider AX ZY. Since point Z is on a semi-circle with center O and diameter [, /X 7Y =
Z. Thus, we have

X7'+YZ? = XY°

B+ = 1P

o= \JI2-L

Substituting Eq. 3.3 for l5, we have Eq. 3.2 since (2 —6) € [0, %].

The tension of each muscle is measured by the Golgi tendon organs that are arranged in
series with muscle fibers. These receptors respond strongly when the muscle actively con-
tracts. Passive stretching of the muscle also activates the Golgi tendon organ but not as
much [Kandel & Schwartz, 1985]. The tension of each muscle is decided jointly by motor neu-
ron activation as well as the length of muscle:

Ty = f(inag) + T -1y (3.6)
Tant = f(inant) +7- lant (37)

where T' is the passive tension constant. 7" is usual small so that the first portion f(in;) (activation
tension) is much stronger than the second portion 7' - [; (passive tension).

3.2 Network Structure

Fig. 3.4 shows the structure of the interconnected neural networks in the motor control model.
There are four layers of neural elements: proprioceptive input layer, proprioceptive cortex layer,
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Figure 3.4: Network architecture of the motor control model: twelve proprioceptive receptor ele-
ments form the proprioceptive input layer and are fully connected to the PI layer. The propriocep-
tive cortex layer PI and primary motor cortex layer MI are two dimensional arrays of elements with
lateral connections. The projection from PI to MI is partial, with a coarse topographic ordering.
Each MI element is connected to the six lower motor neuron elements. The transformation of
activity in lower motor neurons to proprioceptive input is done by a simulated arm represented by
Equations 3.1, 3.2, 3.3, 3.6 and 3.7.

motor cortex layer and lower motor neurons layer. Fach element represents a group of neurons
with the same functionality. In a cortical layer, each element is analogous to a cortical column.
There are six elements in the lower motor neurons layer, representing average activation of each
of six muscles that controls upper and lower arm. The proprioceptive input layer consists of
twelve elements, with six of them representing the length information of the six muscles, while
the other six elements representing the tension information. The activation in the proprioceptive
input layer is not governed by any activation rule, but by the muscle’s geometric configuration
(deciding muscles’ length) and the activation of lower motor neurons (deciding muscles’ tension).
According to Equations 3.2, 3.3, 3.6 and 3.7, once the activation of a pair of muscles is decided,
the corresponding length and tension information is uniquely determined.

The proprioceptive cortex layer (PI layer) contains 400 elements forming a 20 by 20 two-
dimensional, hexagonally tessellated layer, with each element connected to its six neighboring
elements. To avoid edge effects, elements on the edges are connected with elements on the op-
posite edges, forming a torus. These lateral connections are important in formating central ex-
citatory, peristimulus inhibitory activation patterns. The proprioceptive input layer is fully con-
nected to the PI layer. The motor cortex layer (MI layer) has the same size and structure as
the PI layer. The PI layer is partially connected to the MI layer, with a coarse topographic or-
dering. That is, each element in PI is connected to its corresponding element in MI and the
surrounding MI elements within a radius of four. This coarse topographic pattern of connectiv-
ity is motivated by previous experimental studies that have demonstrated topographic ordering
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of excitatory connections from primary sensory cortex to MI [Asanuma, 1989; Jones et al., 1978;
Porter et al., 1990; Yumiya & Ghez, 1984]. Also some previous studies in our research group indi-
cated that the initial coarse topographic ordering could be refined during training under certain
conditions [Reggia et al., 1992; Sutton et al., 1994]. From a computation point of view, such partial
connections, as opposed to full connections between other layers, have greatly reduced the number
of connections and make this model computationally tractable.

The lower motor neuron layer contains six elements representing the activation sent to the six
muscle groups from MI. The MI layer is fully connected to the lower motor neuron layer. Weights on
all of these interlayer connections are initially random. The transformation of muscle activation into
proprioceptive information by the simulated arm effectively connects the lower motor neuron layer
and proprioceptive input layer, and completes the closed loop system. In such a closed loop system,
the activation of any layer will spreads into subsequent layers and in this fashion influences itself.
For instance, the activity of elements in the MI layer spreads to lower motor neurons, positions
the arm, activates proprioceptive inputs, activates the PI layer, and thus ultimately changes the
activation pattern in the MI layer.

In this network structure, the proprioceptive input layer and the lower motor neuron layer are
greatly simplied, with each element representing a certain kind of information of an entire muscle.
On the other hand, the cortical layers (both PI and MI) have many more representing elements
and have a two dimensional structures. Since the purpose of this motor control model is to study
the formation of cortical feature maps and their interrelationships, cortical network layers must be
represented in enough detail for such purpose, while the input and output layers can be simplified
to provide only the necessary biologically plausible information.

3.3 Activation and Learning Rules

The methods used in this network are competitive distribution of activation along with compet-
itive learning. As illustrated in the previously, the competitive distribution of activation has some
advantages in forming the central-excitation, peristimulus-inhibition responses (Mexican Hat re-
sponse) that support map formation. Competitive learning is a widely-used unsupervised learning
method.

The specific activation rule used is:

dak(t)
dt

= csa(t) + (mazx — ap(t))(ing(t) + extr (1)) (3.8)

where
(1) + q)wy;

ink(t) = 3 outi;(t) = 3¢, Zg?(liaf()t) (0] (3.9)

Here ¢, is the decay or self-inhibition constant indicating how fast the activation decays, and maz
is the ceiling value of activation. Constant ¢, is the output gain constant, determining the fraction
of activation to be output. Both parameters p and ¢ can influence the degree of competition. The
larger p is or the smaller ¢ is, the more competitive the model. The value exty(t) is the external
activation received by element k. This activation rule applies to the elements in the PI, MI, and
the lower motor neuron layer. The activation in the proprioceptive input layer is not governed by
this rule but by the arm mechanisms explained above.
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The competitive learning rule used in this model is:

Awgj = nla; — wyjlag (3.10)
where

(3.11)

o = ap —a ifap > «
7Yoo otherwise

and where 7 is a small learning constant. Only the weights from the arm layer to the PI layer are
changed by Eq. 3.10; the cortico-cortical connections are constant. The value « is the threshold
and remains fixed throughout training. It ensures that only nodes with enough activation learn.
This learning rule applys to all interlayer connections. Those intralayer connections in each cortical
layers remain constant through out training process.

3.4 Experimental Methods

The experiments done with this model are divided into two parts. The first part involves the
training process. Initially, all of the weights in the inter-layer connections were random, so the
initial maps were poorly organized. Although the closed-loop has formed after the network was
established, there was no activation in any network layer. The training starts by providing some
external activation at some point of closed-loop network, so that this activation will circulate around
the network structure to exhibit dynamics and flexibility of the model. The second part of each
experiment involves measurement. After training is finished, the corresponding cortical feature
maps are measured in certain ways in order to study the effect of training.

Training was done by stimulating the MI layer, i.e., by providing activation patches at randomly
selected positions in MI. The system was driven by this initial stimulation and the subsequent
activation was determined by the activation rule and feedback information via the closed loop
system. Without clamping any element’s activation value, the system was able to get sufficient
feedback information and no external influence (except the initial stimulation) was exerted on
any layer in the system. The feedback information was able to influence the motor output, and
eventually changed the feedback. Such a closed-loop of information (or activation) flow continued
until the system achieved stablized activation levels in all of the layers, at which point the sensory
feedback was fully consistent with motor output. Learning was conducted in an unsupervised
fashion after such a stablized situation is achieved. The learning rule was applied to all weights
of interlayer connections at the same time. This training process continued until well-organized
cortical feature maps formed.

This training method is motivated by the presumed experiences of an infant exploring space
without visual guide. An infant may initiate random activation patterns in motor cortex that result
in arm movement. By associating feedback information received from the proprioceptive pathway
and the motor commands issued, the cortex is able to self-organize. In this model, the initial
stimulation to the MI layer represents input to MI from other, non-modeled brain areas. Since
little is known about how other cortical areas issue motor commands to MI, a patch of activation
was applied on different randomly selected positions in this model to simulate random movement
commands received by MI.

More specifically, the training procedure was as follows:

o Step 1: Establish the network, forming a four layer, closed-loop system.
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e Step 2: Randomly initialize connection weights for all inter-layer connections between 0.1 and
1.0.

e Step 3: Apply a patch of activation (radius 1, level 0.03) at a randomly selected position in
the MI layer. This patch of activation is retained throughout the learning cycle as external
input exty(t), as indicated in Equation 3.8. The supplied input activation is combined with
feedback activation from PI to jointly determine the activation in the MI layer.

e Step 4: Propagate the activation in MI to the lower motor neuron layer, using competitive
distribution of activations, illustrated by Equations 3.8 and 3.9.

o Step 5: Compute the resultant joint angles, muscle length and muscle tension values of the
model arm according to the transformation mechanisms described in the Equations 3.2, 3.3,
3.6 and 3.7; then use muscle length and tension values as activation values for elements in
the proprioceptive input layer.

e Step 6: Propagate the proprioceptive input layer activation to and within the PI layer, using
Equations 3.8 and 3.9.

e Step 7: Propagate the activation in PI to the MI layer and within the MI layer, using same
activation rules.

o Step 8: Repeat Steps 4 through 7 for multiple iterations until the activation levels in each
layer stablize. Stablization is determined to be a preset number of iterations (120) which was
decided empirically by tracing the activation value for more iterations.

e Step 9: Use unsupervised learning to train the inter-layered connections (Eq. 3.10).

o Step 10: Repeat Steps 3 through 9, applying initial patch activation stimulation at different
positions in MI, for a preset number of stimuli.

The convergence of training is determined in two ways. One way is to continue to train the
networks for more learning cycles, to see whether further training causes qualitatively different
maps. Usually, after a certain number of learning cycles, the maps that have formed in cortical
layer exhibit certain characteristics and relationships. Further training could continue to generate
graduately changed cortical feature maps, due to the randomness in the training, but all of the
characteristics and their inter-relationships still remain unchanged. In this case, as is often done
with models of this sort, the training process was considered completed. Another way to decide
whether training has completed or not is to examine the input-output consistency of the system.
This is done by stimulating (also clamping) the elements in the lower motor neuron layer one by
one, and recording the corresponding activation pattern in MI. Then, these activation patterns are
compared to the MI outgoing weights to the corresponding elements in the lower motor neuron
layer. If they match well, then the system would be self-consistent. From a computational point of
view, this kind of consistency indicates the convergence of training. A property of the unsupervised
learning rule we used is that incoming weights will always shift to approximate the input activation
patterns that activate a cortical element. Since the MI outgoing weights, which are the incoming
weights of the lower motor neuron layer, matched well with the MI activations, the weights should
no longer shift as long as the nature of input patterns does not change, and training has essentially
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completed. If the system is not self-consistent, the weights would keep following the activation
patterns, and qualitatively different cortical maps could still be generated.

After training is complete, the trained network is examined to see whether cortical feature maps
have formed. The measuring of cortical feature maps are very similar to those in biological exper-
iments. There are two kind of cortical feature maps for any cortical layer: input maps and output
maps. For sensory input maps, we measured the cortical activities when certain sensory features
are turned on. For example, to measure the input feature maps in PI with respect to propriocep-
tive inputs, one of the twelve elements in the proprioceptive input layer was tuned on, with the
other eleven elements turned off, forming an activation pattern of the form (0,0,..., P,...,0). This
activation pattern was held steady (or clamped) while activation was propagated to the PI layer.
The activation pattern in the PI layer was recorded after it stablized. Such measurements were
conducted for each of the twelve proprioceptive input features, all of whose corresponding activa-
tion patterns in PI were recorded for later analysis. For motor output maps, biological experiments
usually involve stimulating certain locations in MI and measuring contractions of muscles either by
movement perception or by EMG (electromyogram) [Donoghue et al., 1992]. Similarly, the motor
output maps in this computational model were measured by activating cortical elements, one at a
time, and measuring the activation patterns in the lower motor neurons.

In this chapter, the motor control model was described in some details, as were experiment
methods. The description has been focused on the common part of the model relevant to all of
the work that follows. Since there are different variations of this model, it is inevitable that some
different aspects of the model will be described in subsequent chapters. In Chapter 4, the motor
control model with proprioceptive input alone will be described. This is the basic model, and its
network structure is already described in this chapter. Chapter 4 will only add a more detailed
descriptions that is not covered in this chapter and devote a major part to reporting simulation
results. Chapter 5 will describe a variation of the motor control model with visual inputs only.
Chapter 6 will describe the model with combined proprioceptive and visual inputs.
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Chapter 4

Motor Control Model with Proprioceptive Input Only

The motor control model described in this chapter is the basic model, described in Chapter 3, that
uses only proprioceptive inputs as sensory feedback to form a closed-loop system. This chapter will
give specific parameter setting, simulation results, and the insights gained from these simulations.

4.1 The Model and Parameters

The network architecture, activation rule, and learning method in the version of the motor
control model studied in this chapter have all been described in Chapter 3. The specific parameter
values used in Equations 3.8-3.11 of the model in producing the results described in the next section
are summarized in Tables 4.1 and 4.2. The learning threshold, a, is 0 except a = 0.32 from MI to
lower motor neuron layer. Selection of some parameters was motivated by our previous experiences
with cortical modeling [Sutton et al., 1994; Cho & Reggia, 1994]. Other parameters were obtained
empirically in preliminary simulations so that three things were true: (1) the activation values
of elements in each layer fell within reasonable ranges; (2) intracortical inhibition was sufficient
for distinct features to emerge when maps were formed; and (3) a reasonable learning speed was
achieved. For example, the relatively large value of ¢ between the proprioceptive inputs and PI, and
the large value of p between MI and lower motor neurons, allowed the input stimuli to MI to more
quickly influence neurons immediately “downstream” in the closed-loop and more slowly influence
more distant neurons in PI. This was found empirically to lead to much better map formation.
Other parameters, such as c¢;, M and c¢,, were set appropriately so that the activation level of
elements was mostly between 0 and 1.

Although simulation results reported in next section are based on only one set of parameters,
qualitatively similar results may be obtained from a variety of parameters values. In general, a
small variation of any of the parameters will produce qualitatively similar results. For example,
I found that using all zero learning thresholds gave similar results. More extreme variations of
parameters may yield different maps, but maps generated by these variations may still preserve
the general properties presented in this paper. For example, the lateral connectivity radius in
cortical layers was increased from 1 to 2 or more. While this resulted in larger activation clusters in
the cortical layer, the qualitative results presented in the next section still hold. Parameters used
here are among those giving the best results we observed, but there is no guarantee that they are
optimal. In general, the simulation results reported here are robust.

After training, the maps in different cortical layers were examined. These maps included the MI
input and output maps, and the PI input and output maps. The measuring of maps was analogous
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H Parameters H PI layer ‘ MI layer ‘ Motor Neurons H

Cs

-4.0

-2.0

-2.0

M

5.0

3.0

1.0

Table 4.1: Parameters used in activation update rule.

H Parameters H Arm to PI | PI to PI ‘ PI to MI ‘ MI to MI ‘ MI to Motor H

q 0.1 0.0001 0.0001 0.0001 0.0001
p 1 1 1 1 2
cp 0.8 0.8 0.6 0.4 0.05
B | 0.2 | NA | 02 [ NA | 0.1 |

Table 4.2: Parameters used in activation dispersal rule and learning rule.

to methods used in biological experiments. Generally, the input maps are measured by supplying
different input stimuli and recording the cortical activations; the output maps are measured by
stimulating cortical elements and recording the activations in the lower motor neuron layer. For
each kind of map, there are two slightly different ways of showing it. One way is to represent an
element with the kind of stimulus to which its response is the strongest. The second way is to show
an element with all features that it responds to strongly (above a certain threshold). The first
way emphasizes the most prominent feature, while the second way emphasizes multiple prominent
features. The nature of a map is more clearly illustrated by using both kinds of map.

Length (tension) | Muscle
E (e) upper arm Extensor
F(f) upper arm Flexor
B (b) upper arm aBductor
D (d) upper arm aDductor
O (o) lower arm extensor or Opener
C (c¢) lower arm flexor or Closer

Table 4.3: Labeling of muscle length and tension in illustrations.

4.2 Results

To illustrate the simulation results, the resultant input and output maps are illustrated, and
then a comparison between input and output maps is given. The cortical elements that are tuned
to multiple sensory features or control multiple muscles are also studied. The symbols used to
represent map features are given in Table 4.3. For input maps, capital letters indicate cortical
elements active when the corresponding muscle is stretched (increased length), while lower case
letters indicate elements activated by increased tension in the corresponding muscle. For the output
map, only capital letters are used to represent muscle contraction/activation.
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Figure 4.1: Sensitivity of PI elements to muscle length before (left) and after (right) training
(threshold=0.4). The numbers in the bottom represent the number of elements that are tuned to
each of the six muscle length features in the same order as they are listed in Table 4.3.

4.2.1 Input Map Formation and Characteristics

The measurement of input maps was done by applying twelve different activation patterns
to the proprioceptive input layer, in each of which the activation of one of the 12 proprioceptive
elements was non-zero, while for all the other elements it was zero. This is analogous to stimulating
proprioceptive receptors from a single muscle group and measuring the resulting cortical activities.
In this experiment, the input maps in both PI and MI layer were characterized.

Fig. 4.1 shows the PI input map, before (left) and after (right) training, using the symbols in
Table 4.3. Each symbol in the map represents the feature to which the element in the corresponding
location is most sensitive (i.e., the largest activation value above threshold). Those elements that
responded below threshold to all inputs are represented as ’-’. For example, the element in the
upper left corner of the PI layer was not tuned above threshold to any specific muscle length or
tension before training, but was tuned to upper arm adductor length (D) after training.

The map shown in Fig. 4.1 is difficult to understand. Fig. 4.2 shows the same PI input map
in another way, illustrating only one type of elements that are tuned sufficiently strongly to a
certain feature. Here Fig. 4.2 shows elements tuned sufficiently strongly to the length of the upper
arm extensor (Fig. 4.2 (a) and (b)) and flexor (Fig. 4.2 (¢) and (d)). Because this kind of figure
gives a better indication of the distribution of the responding elements, it is used in the following,
as long as there is no qualitative difference between different muscles. From Fig. 4.2, it is clear
that after training, elements tuned to the same proprioceptive feature formed clusters that are
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Figure 4.2: Tuning of PI elements to the length of the upper arm extensor (E) and flexor (I') before
(left) and after (right) training (threshold=0.4).
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generally uniform in size and shape, and had centers arranged in a regular distribution. The maps
corresponding to other proprioceptive features showed similar qualities (See Appendix A.1.1 for a
complete list of maps of all muscles). This kind of regularity indicates that a map has organized in
the model PI layer with respect to proprioceptive features. The details of this map vary somewhat
depending on the exact display threshold used (0.4 here), but the basic results remain the same.
In addition, detailed study of the PI map in isolation show that although variation in intracortical
lateral connection radius, intensity of lateral inhibition, and overall network size affect map details,
the same qualitative results still hold [Cho et al., 1994].

Figure 4.3 shows both the length and tension maps in the PI layer after training. By comparing
these maps in the proprioceptive cortex layer, one can see that the length map of a particular muscle
matches well with the tension map of its antagonist muscle. For example, the length map of the
upper arm extensor matches the tension map of the upper arm flexor (Fig. 4.3 (a) and (d)), and the
length map of the upper arm flexor matches the tension map of the upper arm extensor (Fig. 4.3
(b) and (c)). This type of relationship between length and tension maps is a result of training, i.e.,
it is not present prior to training. Since the activation of one muscle (increased tension) causes it
to contract, thus stretching its antagonist muscle (increased length), there is a correlation between
one muscle’s tension and its antagonist’s length in each input pattern. The maps capture the
temporally correlated features of input patterns, reflecting the mechanical constraints imposed by
the model arm.

The above paragraph described the relationship between different input feature maps. The
alignment of feature maps is measured by visual comparison. There is another, more objective way
to measure map alignment. Here we call it a similarity measuring method, as it quantitatively
measures the similarity of two maps. With this method, the similarity of two feature maps is
measured by taking the two corresponding activation patterns as vectors and calculating their
normalized dot product (or inner product). For example, if features A and B (here A or B can be
any of features indicated in Table 4.3) has corresponding activation patterns A and B, in vector
format, then the similarity measurement of these two features is defined as:

A-B
[A[ 1Bl

here the symbol " is the ordinary dot product of vectors; ||A|| and ||B|| represent the length of
vector A and B. In fact, Equation 4.1 simply calculates the cosine value of the angle formed by
vector A and B in a 400 dimensional space. This value is always in the range of [0,1], because all
the components of the vectors are non-negative. The similarity value becomes 1 when two vectors
are in the same direction, in which case the maps of the two features are completely aligned. On the

cos(A,B) = (4.1)

other hand, the similarity value becomes 0 when no component of both vectors has a non-zero value
at the same time. In this case, the corresponding maps have no overlap at all. In the intermediate
cases, the similarity values are somewhere between 0 and 1, and the corresponding feature maps
are partially aligned.

Table 4.4 shows the similarity values between length and tension feature maps in proprioceptive
cortex layer before training. In this table, each value is the similarity measurement of corresponding
length and tension feature maps (using representing letters as illustrated in Table 4.3). Each column
represents the correlations of different tension input features to the same length input feature, while
each row represents the correlations of different length input features to the same tension input
feature. For example, the value 0.20 in column F and row e is the similarity value between the
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Figure 4.3: PI elements which are tuned above threshold to selected proprioceptive stimuli after
training (threshold=0.4): (a) elements tuned to length of upper arm extensor, (b) elements tuned
to length of upper arm flexor, (c) elements tuned to tension of upper arm extensor, (d) elements
tuned to tension of upper arm flexor.
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E F B D 0] C
0.18 | 0.20 | 0.10 | 0.17 | 0.31 | 0.11
0.10 | 0.15 | 0.25 | 0.28 | 0.18 | 0.42
0.14 | 0.15 | 0.12 | 0.17 | 0.26 | 0.19
0.07 1 0.20 | 0.17 | 0.13 | 0.25 | 0.13
0.16 | 0.22 | 0.07 | 0.27 | 0.19 | 0.18
0.12 ] 0.14 | 0.22 | 0.19 | 0.22 | 0.32

OO | &|lT|| @

Table 4.4: Similarity values between length and tension input features in proprioceptive cortex
before training.

E F B D 0] C
0.00 | 0.98 | 0.06 | 0.00 | 0.18 | 0.32
0.93 | 0.00 | 0.12 | 0.14 | 0.00 | 0.01
0.03 | 0.00 | 0.00 | 0.97 | 0.04 | 0.01
0.08 | 0.01 | 0.95 | 0.02 | 0.21 | 0.06
0.07 | 0.30 | 0.01 | 0.01 | 0.00 | 0.98
0.03 | 0.04 | 0.04 | 0.02 | 0.83 | 0.00

OO | &|lT @

Table 4.5: Similarity values between length and tension input features in proprioceptive cortex
after training. Those values that are bigger than 0.7 are indicated in bold.

length feature of upper arm flexor (I') and the tension feature of upper arm extensor (e). In this
table, none of the similarity values is bigger than 0.5, indicating that before training, there are no
strong correlations between any pairs of input features.

Table 4.5 shows the same similarity values between length and tension feature maps in the
proprioceptive cortex layer after training. In this table, those pairs that have strong similarity
values (in bold face) are: (E, f), (F, e) (B, d), (D, b), (O, ¢) and (C, o) . It is apparent that
the length feature of each muscle is strongly correlated with the tension feature of its antagonist
muscle, and vice versa. This result is consistent with the visual comparison between input feature
maps given above.

The similarity measuring method is an accurate, easily interpreted method. It gives a quantita-
tive measurement of how similar two cortical feature maps are. This is more important when some
cortical feature maps are only partially aligned, in which case it is difficult to draw conclusions
from subjective visual comparisons. In the model described in this chapter, the cortical feature
maps either tend to be aligned or do not overlap. So visual comparison is also effective (and most
of the time, more intuitive) for studying the relationships between cortical feature maps. In the
following chapters, some of the cortical feature maps are only partially aligned or overlapping. In
those cases, the similarity measuring method show its advantages.

Figure 4.4 shows the length and tension maps in the MI layer after training The input maps in
this layer undergo a transformation, when compared with the input maps in the PI layer. While
clusters formed in this layer with a certain degree of regularity during training, it is apparent that
the clusters in these post-training maps are less unform in size, shape and periodicity, compared to
the corresponding post-training PIinput maps (Fig. 4.3). However, the same internal relationships
still hold for the MI input map as for the PI input map: the length map of a particular muscle
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Figure 4.4: MI elements tuned above threshold to selected proprioceptive stimuli after training
(threshold=0.4): (a) elements tuned to length of upper arm extensor, (b) elements tuned to length
of upper arm flexor, (c¢) elements tuned to tension of upper arm extensor, (d) elements tuned to
tension of upper arm flexor.
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matches well with the tension map of its antagonist muscle. This indicates that the MI layer,
although a step further away from the model arm where the mechanical constraints exist, still
captures this feature of the input patterns.

ECE Pl

Figure 4.5: Intersection of activation areas. Fach activated element in the PI layer spreads activa-
tion to its corresponding element in the MI layer and its nearby elements. The MI elements in the
intersection area get most activation.

The fact that the PI input maps are quite different from the MI input maps has led to further
observations about the transformation of maps from PI to MI. Although the connections from PI to
MT initially have coarse topographic projections, such a topographic mapping was not refined during
the training process, as was seen in the ST model described in Chapter 2 [Sutton et al., 1994]. There
are two reasons for this. First, multiple groups activating elements in PI project their activations
to the corresponding MI area within a certain radius. Therefore the projecting areas from different
groups tended to intersect. As a result, these intersecting areas received more activation and finally
win the competition in attracting more activation (Fig. 4.5). Second, the elements in the MI layer
serve for both receiving sensory input and sending motor output. Thus the sensory information
MI receives is used to change the motor output commands, which in turn change the sensory
feedback. In this process, it is necessary for the MI layer to find a compromise activation pattern
that allows the output commands to be consistent with sensory feedback, in order to form stable
activation patternsin all layers. Fig. 4.6 shows some of the incoming weight vectors of MI elements
after training. Instead of forming a Gaussian shaped distribution as in the SI model, these weight
vectors exhibit diversified distributions. This indicate that the transformation from PI to MI has
become more complicated. There is no apparent correlation between the maps in PI and MI.
Rather, the MI input maps are more associated with the MI output maps.

Once again, the similarity measuring method was applied here to quantitatively describe the
relationships between MI input maps. Table 4.6 shows all of the similarity values between length
and tension feature maps in motor cortex layer before (left) and after (right) training. Before
training, the similarity values between length and tension feature maps ranges from 0.13 to 0.46,
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Figure 4.6: There is no single representative distribution of incoming weights in MI after training.
Several different shapes are illustrated here. In each diagram, the width and length of the box
represent the cortical surface, while the height represents the strength of the weight. The weight
surface is plotted such that each weight is connected with its six neighboring weights. Therefore the
distribution of weights is illustrated by the surfaces. (a) The incoming weights of node[2][2]: several
peripherally located strong spots. (b) The incoming weights of node[0][10]: random-like shape. (c)
The incoming weights of node[0][13]: stripe shape. (d) The incoming weights of node[1][6]: central
strong shape with some scattered peripheral strong spots.
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E F B D 0] C E F B D 0] C
0.30 | 0.24 | 0.16 | 0.13 | 0.40 | 0.21 0.00 | 0.98 | 0.02 | 0.02 | 0.07 | 0.12
0.30 | 0.34 | 0.35 | 0.33 | 0.31 | 0.46 0.93 | 0.00 | 0.03 | 0.03 | 0.01 | 0.01
0.24 1 0.19 | 0.15 | 0.35 | 0.32 | 0.23 0.00 | 0.01 | 0.00 | 0.98 | 0.01 | 0.01
0.20 | 0.34 | 0.20 | 0.26 | 0.36 | 0.25 0.03 | 0.01 | 0.97 | 0.00 | 0.13 | 0.01
0.27 1 0.27 { 0.20 | 0.38 | 0.18 | 0.25 0.03 | 0.11 | 0.02 | 0.01 | 0.00 | 0.98
0.29 1 0.20 | 0.24 | 0.24 | 0.20 | 0.40 0.01 | 0.01 | 0.00 | 0.02 | 0.83 | 0.00

OO | &|lT|| @

OO | &|lT|| @

Table 4.6: Similarity values between length and tension proprioceptive input features in the motor
cortex layer before (left) and after (right) training. Those values that are bigger than 0.7 are
indicated in bold.

indicating that no input feature map exhibits strong correlation with any other map. After training,
the similarity values changed to be either very big (close to 1.0) or very small (close to 0.0). These
values reflect the correlations between each length and tension feature, indicating that the length
feature of each muscle is strongly correlated with the tension feature of its antagonist muscle.

4.2.2 Motor Output Map Formation and Characteristics

The MI output map was examined after training by stimulating each MI element one by one
and seeing which muscle(s) became activated. For simplicity, the MI output map was measured by
examining the weights from MI to the lower motor neuron layer. In Chapter 7, some theoretical
analysis will show that these two methods actually generate essentially the same feature maps, as
long as appropriate threshold values are used. Fig. 4.7 shows the MI output weight map for the
upper arm extensor muscle (E) and flexor muscle (F'). Each ‘E’ (or ‘F’) means that the weight
from MI to the lower motor neuron controlling the upper arm extensor (or flexor) is above a given
threshold. Maps for other muscles show similar features (See Appendix A.1.3 for a complete list of
maps of all muscles).

Comparing Fig. 4.7 (a) and (b), (¢) and (d), it is apparent that clusters formed during training.
These clusters are larger and more irregular than those in the Pl input map. Some clusters suggest
a tendency to form stripes. Although these clusters are not uniform in size and shape, they are
similar to the activation patterns actually seen in mammalian MI cortex [Donoghue et al., 1992].

4.2.3 Consistency Between Input and Output Maps

In the previous paragraphs it was shown that the appearance of the MI input map is quite
different from the PI input map (compare Fig. 4.3 and Fig. 4.4), and the projection from the PI
layer to the MI layer is not in the previously expected topographic order. This raises the question
of the nature of the relationship of the MI input map to the MI output map.

Fig. 4.8 (a), (b) shows the MI output maps of the upper arm extensor and flexor, marked by E
and F, respectively, based on the MI output weights. Fig. 4.8 (c), (d) shows the MI proprioceptive
maps with regard to the length and tension of the upper arm extensor, respectively, based on the
activation of MI elements (above threshold) when the length or tension feature is present in the
proprioceptive input layer. By comparing the MI output and input maps, it is seen that the MI
input map of a particular muscle’s length matches well with the MI output map of its antagonist
muscle, while the MI input map of a particular muscle’s tension matches well with the MI output
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Figure 4.7: MI output map before (left) and after (right) training for upper arm extensor (E) and
flexor (F) (threshold=0.4).
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Figure 4.8: Comparing post-training MI output maps (threshold = 0.7) of the upper arm extensor
(a) and flexor (b) with MI input maps (threshold = 0.4) of length (c) and tension (d) of the upper
arm extensor.
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E F B D 0 C E F B D 0 C
E (| 052|048 | 0.49 | 0.52 | 0.51 | 0.53 E || 0.02 | 0.95 | 0.07 | 0.09 | 0.08 | 0.07
F [| 050|049 | 050 | 0.48 | 0.51 | 0.52 F || 0.96 | 0.02 | 0.03 | 0.04 | 0.17 | 0.09
B (| 049|047 | 047 | 0.46 | 0.49 | 0.49 B || 0.05 | 0.09 | 0.04 | 0.98 | 0.04 | 0.05
D (| 047|049 | 047 | 0.49 | 0.50 | 0.48 D | 0.04 | 0.10 | 0.97 | 0.04 | 0.04 | 0.08
O | 049|050 | 0.47 | 0.48 | 0.47 | 0.48 O 0.25 | 0.05 | 0.06 | 0.23 | 0.02 | 0.86
C 048 | 0.48 | 0.50 | 0.49 | 0.48 | 0.48 C | 0.18 | 0.04 | 0.04 | 0.04 | 0.98 | 0.03
e || 050|049 | 049 | 0.53 | 0.50 | 0.47 e || 0.95 | 0.02 | 0.02 | 0.03 | 0.10 | 0.08
f 0.49 | 0.51 | 0.52 | 0.53 | 0.53 | 0.49 f 0.02 | 0.97 | 0.09 | 0.05 | 0.03 | 0.05
b || 048 | 0.50 | 0.49 | 0.49 | 0.45 | 0.46 b 0.02 | 0.06 | 0.95 | 0.04 | 0.03 | 0.08
d || 049 | 0.48 | 0.48 | 0.45 | 0.50 | 0.48 d || 0.03 | 0.05 | 0.04 | 0.97 | 0.03 | 0.05
o || 047 | 0.45 | 0.50 | 0.50 | 0.50 | 0.48 o 0.10 | 0.03 | 0.03 | 0.03 | 0.98 | 0.03
c || 048|048 | 0.51 | 0.49 | 0.47 | 0.48 c 0.12 | 0.05 | 0.08 | 0.06 | 0.03 | 0.96

Table 4.7: Similarity values between length and tension input features in motor cortex before (left)
and after (right) training. Those values that are bigger than 0.7 are in bold style.

map of ils corresponding muscle. For example, the MI proprioceptive length map of the upper
arm extensor matches well with the MI output map of the upper arm flexor (compare Fig. 4.8 (¢)
with (b)); the MI proprioceptive tension map of the upper arm extensor matches well with the MI
output map of the same muscle (compare Fig. 4.8 (d) with (a)). The reason for this is that when a
muscle is activated in producing a movement, it contracts, and its length typically decreases, while
its antagonist muscle’s length is increased accordingly. At the same time, the activated muscle
is under increased tension. Therefore activation of a muscle typically generates proprioceptive
feedback indicating increased stretch of its antagonist muscles, and increased tension of itself. This
kind of correlated activation of muscle length and tension feedback is captured by the model and
reflected in the maps, such as those in Fig. 4.8.

Table 4.7 summarized the similarity values between MI input and output features before (left)
and after (right) training. In each column of the table, the values correspond to the same output
feature, represented by a capital letter on top of the column. In each row of the table, the values
correspond to the same length or tension input feature, represented by a capital or lower case letter
(as illustrated in Table 4.3), respectively, on the left hand side of the row. For example, in the
table on the left hand side, the value 0.49 in the row of 'E’ and column of 'B’ is the similarity
value between the length input feature of upper arm extensor (E) and the motor output feature of
upper arm abductor (B) before training. In the same table, the value 0.50 in the row of ’e’
the column of '’ is the similarity value between the tension input feature of upper arm extensor
(e) and the motor output feature of upper arm extensor (E). It should be noted that the labels
on top of the columns represent motor output features, and should not be confused with the label
on the left hand side of each row, which represent input features. From Table 4.7, it is clear
that before training the similarity values ranged randomly from 0.45 to 0.53, showing no strong
correlations. After training, the similarity values changed dramatically to reflect the correlations
of the self-organized feature maps. The upper half of the table on the right hand side illustrates
the correlations between the length input feature and the motor output feature after training. We
can see that the pairs of antagonist muscles have strong correlations, with similarity values from
0.86 to 0.98. The lower half of the table on the right hand side illustrates the correlations between
the tension input feature and the motor output feature after training. It is quite clear that all of

and
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the large similarity values (from 0.95 to 0.98) are on the diagonal line, indicating that the tension
input feature and the motor output feature of the same muscle are strongly correlated. All these
properties are natural results of the training.

4.2.4 Elements Tuned to Multiple Features

In both the PI and MI layers, there are elements which became tuned to multiple proprioceptive
input features. Some of these tunings are potentially incompatible with the constraints imposed by
the mechanics of the model arm. For instance, it seems unlikely that a PI element would be tuned
to both a muscle’s length and to its tension together since a muscle does not usually contract (high
tension) and lengthen simultaneously in the model arm. Another implausible case would be that a
PI element is tuned to the stretch of two antagonist muscles, since they cannot be stretched at the
same time. Table 4.8 shows the number of PI and MI elements tuned to implausible pairs of inputs
before and after training. On the first line of the table, implausible tuning pairs are given using
the symbols in Table 4.3. For example, label (E,I") indicates that a cortical element is tuned to the
length of the upper arm extensor and flexor simultaneously, i.e., that it is activated above threshold
when either of these muscles is stretched. Following each label in the same column are the numbers
of cortical elements that are tuned to the indicated pair of features. The number of PI and MI
elements tuned to implausible pairs decreased to zero during training. This is clear evidence that
the model learned the correlations between proprioceptive features arising due to the constraints of
the model arm. It should be noted that the plausibility of map features here is predicated on the
specific details of the model arm used. Thus, maps in our model would be unable to capture some
correlations between muscle tension and length occurring with real movements. The key point here
is that the feature maps do not represent implausible relationships for the given arm model.

Tuning Pairs (E,F) | (B,D) | (O,C) | (Eye) | (F,f) | (B,b) | (D,d) | (O,0) | (Cic) | sum
PI before training 5 7 2 8 6 3 7 3 6 47
PI after training 0 0 0 0 0 0 0 0 0 0
MI before training 9 4 11 12 7 9 14 9 11 86
MI after training 0 0 0 0 0 0 0 0 0 0

Table 4.8: Numbers of implausibly tuned PI and MI layer elements (threshold=0.5).

MI elements that control multiple muscles were also examined. Fig. 4.9 shows the MI elements
which have strong connections to multiple muscles after training. At a threshold of 0.4, there were,
among 400 elements, 90 elements having strong connections to multiple muscles, and 16 of them
controlled 3 muscles. With a higher threshold, the number of multiple control elements decreases.
A careful examination of these multiple controlling elements shows that most of them (85 out
of 90) control muscles acting along different coordinates. For example, as shown in Figure 4.9,
the element in the second row and sixth column can activate the upper arm extensor (E), upper
arm abductor (B) and lower arm extensor (O), each being one of the three pairs of antagonist
muscles. This type of element is capable of producing coordinated movement of the arm toward
a particular direction, in this specific case toward the upper back part of space. This result is
consistent with the observation that some neurons in motor cortex code for movement direction.
It also provide a testable prediction on the controlling of muscles by motor neurons that could be
verified by biological experiments. It should be pointed out that in the mammalian motor system,
the control of multiple muscles by individual MI neurons can be implemented via lower brain and
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Figure 4.9: Map of MI elements strongly activating multiple muscles (threshold=0.4)

spinal circuitry, so our model is by no means analogous to biological systems in terms of actual
neural circuitry. This result indicates that, via training, it is possible to produce this type of

multiple muscle control in a more general sense from initially random connections.

4.2.5 Sensitivity to Simultaneous Weight Adaptation

Our model makes the assumption that all three sets of connection weights (sensory neurons to
PI, PI to MI, and MI to lower motor neurons) mature simultaneously. While relatively little is
known about the precise development of these connections, there is some evidence that the PI to
MI connections develop later than the others [Bruce & Tatton, 1980], and thus the developmental
assumption in our model should be viewed as only a first approximation to reality.

To examine this issue, we undertook a single simulation with the same parameter values used
in the simulation described above, where training was done sequentially. Specifically, we allowed
sensory connections to learn first (2000 iterations), then those connections plus MI to lower motor
neuron connections to learn (2000 iterations), then all connections to learn (2000 iterations), mo-
tivated by data in [Bruce & Tatton, 1980]. We used a smaller learning rate n = 0.05 on sensory
connections to PI to compensate for its longer total training time. The maps obtained and their
alignments were qualitatively similar to those described above, although for one of the six muscle
length inputs the alignment with motor outputs was not precise. We believe that a substantial
joint learning phase is necessary for complete map alignment to occur. This result, plus the fact
that qualitatively similar maps appear in isolated PI when it is trained by randomly positioning
the arm [Cho & Reggia, 1994], suggests that the results obtained here are not sensitive to the exact

developmental order of connection maturation.

40



4.2.6 Lesioning Study of the Motor Control Model

After development, the motor control model reported in this chapter was used to study the
effect of lesions to the cortical feature maps [Goodall et al., 1997]. After training was completed
and the maps formed, the motor control model was subjected to simulated sudden, focal lesions
to a cortex region. There are two sets of lesions studied: lesions of PI and MI. In both cases, an
area of cortical elements were clamped to zero to simulate a lesion. The cortical feature maps were
examined immediately after lesioning, as well as after the model was further trained with additional
2000 training patterns. These maps were compared with the corresponding maps of the pre-lesion
model and a control model, which was being trained without being lesioned.

It was found that immediately after a PI area was lesioned, the perilesion area in PI became
less active in responding to proprioceptive stimuli, forming a functional impairment zone. After
further training, this functionally impaired zone became larger. On the other hand, lesioning of an
area in MI caused perilesion regions to have increased activation. Further training increased the
activity in these perilesion regions. These simulation results suggested that there are two phases
of cortical map reorganization: a rapid reorganization in response to the focal lesion, and a slower
reorganization after further learning. Also, the activity in the perilesion area was found to play an
important role in long term map reorganization. Appendix B gives a more detailed description of
the simulation of lesion study. It illustrates one way in which the motor control model can be used
to study hypotheses about neurological disorders.

4.3 Discussion

Self-organizing feature maps have become important neural modeling methods over the
last several years. They have not only shown great potential in application fields such
as motor control, pattern recognition, optimization, etc [Ritter et al., 1989; Kohonen, 1989;
Angeniol et al., 1988], but have also provided insight into how the mammalian brain becomes or-
ganized [von der Malsburg, 1973; Linsker, 1986; Grajski & Merzenich, 1990; Burnod et al., 1992;
Weinrich et al., 1994; Sutton et al., 1994]. The computational motor control model described here
falls into this second category. It exhibits properties that are consistent with experimental findings
involving biological motor control systems. It also provides us with knowledge about the organizing
and processing of sensory and motor information along the input-output pathway. Some properties
of the model are summarized as follows.

First, this model has shown spontaneous emergence of multiple feature maps during unsuper-
vised learning. The model self-organized from initially random connections. These results indicate
that, although this model is a significant simplification from reality, it has captured the basic struc-
ture and some principles of biological motor control systems. The fact that the model self-organizes
into multiple feature maps that are stable in spite of its closed-loop nature suggests that the un-
derlying assumptions (network connectivity, activation dynamics, unsupervised learning, etc.) can
account for some important aspects of proprioceptive and motor map formation in mammalian
cortex. We believe that these map formation results do not depend significantly on the specific
form of the activation rule used in the model (Eq. 3.8 and 3.9), as long as a clear cut Mexican Hat
pattern of lateral interactions occurs in the cortex [Reggia et al., 1992]. For example, qualitatively
similar results have been obtained when previous cortical map formation experiments using activa-
tion rules similar to those used here [Cho & Reggia, 1994; Sutton et al., 1994] were re-implemented
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using more standard activation functions.

Second, the maps formed capture the mechanical constraints of the simulated arm. Analysis of
the proprioceptive input maps showed that the same elements were tuned to the length/stretch of
a particular muscle and to the tension of its antagonist muscle. This is true for both cortical layers.
It indicates that cortical elements are capable of recognizing the temporal correlations in the input
patterns. This model also showed a consistent relationship between the proprioceptive input maps
and motor output maps. It was found that the set of MI elements that control a particular muscle
usually respond to the tension of this muscle and the length of the antagonist muscle. These results
are biologically plausible and support the following hypothesis: when multiple feature maps exist in
the same region of cortex, features in one map that are temporally correlated with those in another
will come to occupy the same spatial locations.

Third, the motor output map generated in this model qualitatively resembles the map in mam-
malian motor cortex. Many experiments have been conducted on mammalian motor cortex, one
of which is a systematic mapping of primate forelimb motor cortex [Donoghue et al., 1992]. In
that experiment, several major findings indicated that the organization of motor cortex is more
complicated than previously thought:

e Property 1. Neurons representing the same muscle form separated, widely distributed clusters.

o Property 2. The size and shape of clusters representing the same muscle differ significantly
from muscle to muscle, from subject to subject.

e Property 3. Many neurons in motor cortex can activate multiple muscles.

e Property 4. No apparent topographic relationships were found in the forelimb area of motor
cortex.

Properties 1 and 4 are apparent in our computational model. Property 2 is also apparent when
comparing the regularity of the proprioceptive input maps in PI with the irregular motor output
maps in MI (compare Fig. 4.3 and Fig. 4.8 (a), (b)). Property 3 emerges in our model via un-
supervised learning. As indicated by Fig. 4.9, many MI elements control multiple muscles. Also,
by increasing the measurement threshold the number of MI elements that control multiple muscles
decreased. This is also consistent with experimental data showing that stronger stimulation tends
to recover more multiple-muscle neurons [Donoghue et al., 1992].

This computational motor control model also provides testable predictions that can be verified
or refuted by future biological experiments, as follows. First, to my knowledge, there has been
no systematic mapping conducted on mammalian proprioceptive cortex. Thus, the characteristics
shown in the cortical proprioceptive input maps, such as regular clusters of elements tuned to the
same muscle tension /length, represent testable predictions, although we would not expect as precise
regularity as occurs in our simplified model. The relationship between muscle length and tension
features are also yet to be verified in biological experiments.

This motor control model also shows that proprioceptive sensory maps formed in the MI layer
after training. These latter maps exhibit the same properties as seen in the PI layer. On the other
hand, the proprioceptive maps in the MI layer, although they capture the same constraints, differ
from the maps in the PI layer in terms of cluster size and shape. Analysis of the model reveals
that this is due to the weights on connections from the PI layer to the MI layer. Even though
the connections from the PI to the MI layer were initially coarsely topographic, training did not
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refine this topographic projection, and the resultant weights became complicated and could not be
characterized by any simple property.

The view that neurons in MI code for the force of exertion of individual muscles is con-
troversial. Some of the neurons in MI activate multiple muscles [Donoghue et al., 1992], sug-
gesting that these neurons might code for movement direction rather than individual muscles
[Georgopoulos et al., 1986]. With this computational model, it was found that most multi-
ply tuned MI elements controlled muscles in different muscle-group pairs and thus their ac-
tivation tends to move the hand toward a particular direction. This finding is consistent
with biological experiments showing that motor neurons tend to project to synergistic muscles
[Cheney & Fetz, 1985] and with demonstrations that neurons in motor cortex code for move-
ment directions [Georgopoulos et al., 1986]. Experimentally, stimulation of motor cortex neurons
tends to excite one muscle and inhibit its antagonist muscle, thus causing synergistic movements
[Cheney & Fetz, 1985]. Whether the activation of motor cortex neurons activates muscles in differ-
ent joints (or the same joint but different movement dimensions) is an interesting issue for future
biological experiments. It should be noted that our computational model is built without a prior:
discrimination between muscles with respect to being antagonists or operating at differing joints;
it is the training that distinguishes the muscles in different pairs.
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Chapter 5

Motor Control Model with Only Visual Input

In this chapter, a variation of the motor control model is studied to investigate the effects of
visual input as feedback. In biological motor control systems, the motor cortex receives input from
afferent pathways other than proprioceptive input, including visual input [Johnson, 1992]. Most
previous models involving visual input and motor output have tried to minimize errors in reaching
movements[Kuperstein, 1988; Ritter et al., 1989; Walter & Schulten, 1993]. In other words, these
past models used learning rules in order to minimize the difference between target position and
hand position in their sensory feedback. Little effort has been taken to analyze visuo-motor cortical
feature maps that self-organize using unsupervised learning. In this section such an analysis will
be conducted. The model still has a simulated arm, and a two dimensional layer of MI elements.
Instead of having a proprioceptive input layer, however, a layer of visual inputs supplies feedback
information.

5.1 The Model

Fig. 5.1 shows a schematic diagram of the model. In this model, the MI layer is again a 20 by
20 two-dimensional, hexagonally tessellated layer, with each element connected to its six neighbors.
This layer is fully connected to the lower motor neuron layer, which has six elements representing
activations of six muscles. The visual input layer has nine elements, which are fully connected with
the MI layer. Visual input here represents an abstraction of hand position in shoulder-centered
coordinates directed to MI from visual cortical regions [Johnson, 1992]. The transformation from
lower motor neuron activation to hand position is based on the mechanism of the model arm
described earlier, so this version of the model again forms a feedback loop.

In order to measure the visual input in space (i.e. hand position), it is necessary to define a
coordinate system. Fig. 5.2 shows a coordinate system in relation to a human body which is facing
into the page. The origin of the coordinate system is the shoulder of the right arm (where the
simulated arm is anchored), and the positive directions of the coordinate axes are shown.

The nine elements in the visual input layer are divided into three groups. Fach group has three
elements, coding the hand position in one of the three dimensions: X, Y, or Z. In each dimension,
the movement range of the hand position of the model was linearly scaled into [-1, +1]. The three
elements coding the same dimension overlap but are tuned maximally to the negative, middle, or
positive part of the range, respectively. The actual tuning formula (taking the X dimension as an
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Figure 5.1: The motor system with visual inputs. The MI elements send activation to lower motor
neurons, which direct the arm movement. There is a visual input layer, which receives coded
information about the hand position of the model arm and supplies this information to the MI
layer. The feedback to the MI layer influences the MI output and thus forms a closed-loop.

example) are:

actxy; = max(—H,,0) (5.1
actxe = max(l—2*abs(H,;),0)
actys = max(H,,0)

where H, is the hand position in the X dimension that ranges from -1 to +1. Variables actyq,
actxo and actys are activations of the elements tuned to the negative, middle and positive ranges
of the X dimension, respectively. Function maz takes the maximum of its parameters, while abs
stands for absolute value returning the magnitude of its parameter. Fig. 5.3 shows graphically the
tuning curves based on the above formulae. This coding scheme ensures that no matter what X
value the hand position has (assuming it is in the range of [-1,41], after scaling), there is always at
least one visual element(s) activated. The three element coding is relatively coarse, and the overlap

of the tuning ranges ensures a unique tunning pattern for every position. A similar representation
of hand position is used for the Y and Z dimension.
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Figure 5.2: The coordinate system in the arm movement space relative to a human body that is
facing into the page. The origin of the coordinate system is the right shoulder of the body, which
is also one end of the simulated arm. The positive direction of the X axis is to the back of the
body (out of the page). The positive direction of the Y axis is to the right side of the body. The
positive direction of the 7 axis is up. Small circles designate “hand” positions.

5.2 Experimental Methods

The training method is similar to that previously described. All the weights (except those
intralayer connections in the MI layer) were randomly initialized. Training was done by applying
a patch of activation (of radius 1) at randomly selected MI regions. The activation spread to the
lower motor neuron layer, using the mechanism of competitive distribution of activation (Equation
3.8 and 3.9). The activation pattern in the lower motor neuron layer was then transformed into
the corresponding activation pattern in the visual input layer, using the arm mechanism and the
Equations 5.1-5.3. The visual input layer then spread the activation back to MI, and influenced
the MI activation pattern. This formed a closed-loop system. No element’s activation was clamped
in any layer. After sufficient time steps (120 were used empirically in this experiment), stablized
activation levels were achieved in all the layers. Learning was then conducted by applying the
competitive learning rule to all of the inter-layer connections (Equation 3.10 and 3.11). The model
was trained for 6000 learning cycles before the maps were examined. Further training would change
the appearance of the maps but all the characteristics of the maps reported in later sections remain.

The parameter values used in FEquations 3.8-3.11 of the model in this experiment are summarized
in Tables 5.1 and 5.2. The learning threshold, «, is 0 in all layers. The parameters used in this
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Figure 5.3: The tuning curves of the three visual elements coding hand positions in the X-dimension.

experiment are similar to those in previous experiments. Any small change to any parameter would
not change the qualitative characteristics of the results discussed in the following sections.

After training, the MI input and output maps, along with their relationships, were examined.
The MI output maps were measured in the same way as described earlier. Basically, for each of the
six muscles, there is a corresponding MI output map that shows the MI elements with connections
strong enough (above a certain threshold) to this muscle. The MI input maps with respect to the
visual input were measured by stimulating visual input elements and measuring the corresponding
MI activations. This was achieved by activating one of the nine elements in the visual input layer
each time and holding that pattern steady. The corresponding MI activations were then examined
after activation stablization was achieved.

In the analysis of this model, in addition to examining the characteristics of the individual maps,
it is also interesting to study the relationships of the input maps and output maps. Basically, we
again are studying the correlation of different features, because each input or output map represents
the distribution of a particular feature. There are two ways to study the correlation of features: by
visual comparison and by using the similarity measuring method. Both methods have been used
in the motor control model with proprioceptive inputs, as described in previous chapter, but need
further consideration here because of the more complex relations between MI visual input and MI
motor output maps.

The visual comparison method is more intuitive, especially when the two features investigated
have a strong correlation or no correlation at all. In these cases, it is easier to see the relationship
of the two features by visual inspection. However, this method has some limitations. First, it is
a qualitative and subjective measurement. This method can only give a rough estimation about
whether or not the two investigated features are correlated. It will not indicate how strong the
correlation is. Second, some of the features have no clear one-to-one correspondence. That is,
one feature could be partially correlated with multiple features. In this case, one map is partially
aligned with multiple maps. It is difficult to use a visual comparison method to examine such
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H Parameters H MI layer ‘ Motor Neurons H
Cs -2.0 -0.2
M 3.0 1.2

Table 5.1: Parameters used in activation update rule.

H Parameters H Visual to MI ‘ MI to MI ‘ MI to Motor H

q 0.0001 0.0001 0.0001
P 1 1 2
cp 5.0 0.4 0.005
[ n | 0.1 | NA | 0.1 |

Table 5.2: Parameters used in activation dispersal rule and learning rule.

relationships. Third, the map drawing of each feature is threshold dependent. When doing a visual
comparison, some of the less prominent elements could be ignored. Further, the strongest elements
appear on the map equally with other elements above the threshold. Therefore, no matter what
threshold is chosen, there is a certain bias within the comparison.

The similarity measuring method is able to avoid the above limitations. This method is a
quantitative measurement of the correlation of two features. It can indicate whether two feature
are fully correlated, partially correlated, or not correlated at all. It is also quite simple to see the
one-to-many feature correlations by listing the pairwise similarity values between all the relevant
features. The similarity value is threshold independent, which means that it accounts for all of the
involved elements, to a degree based on their activation levels. Therefore, the similarity value is a
more precise measurement of the correlations of features. The disadvantage of this measurement is
that it is less intuitive. Also the single value does not reflect the distribution of the cortical maps.
So this method is only suitable in the analysis of the correlations of the feature maps.

5.3 Results

In this section, first the cortical feature maps in MI, including visual input map and motor
output map, are described. Then the relationship between these input maps and output maps are
investigated.

5.3.1 Cortical Map Formation in MI

Fig. 5.4 shows the MI output maps for upper arm extensor (E) and flexor (I'), before and after
training. The maps for other muscles show similar properties (See Appendix A.2.1 for a complete
list of maps of all muscles). It is quite clear that before training, the MI elements that control the
same muscle are randomly distributed throughout the MI layer, due to the random initialization
of the connection weights between the MI layer and the lower motor neuron layer. After training,
elements controlling each muscle have aggregated to form clusters. The size of the clusters varies,
but single element clusters are unlikely. This is due to the “Mexican Hat” shape of the cortical
activation pattern during training. The difference of the maps before and after training indicate
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Figure 5.4: The MI output maps before (left) and after (right) training. Only maps for the upper
arm extensor (E) and flexor (F') are shown (threshold=0.4).
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that self-organization has occured. Also examining the post-training maps in detail indicated that
the maps of antagonist muscles are mutually exclusive (no overlap). The characteristics of these
maps are similar to the motor output maps in the model with proprioceptive input only.

Fig. 5.5 shows the MI input maps from the visual input layer, before (left) and after (right)
training. Only maps in the X dimension are shown. Maps in the other dimensions show similar
characteristics (See Appendix A.2.2 for a complete list of maps of all dimensions). Fach ‘X1’ in
the map indicates that the MI element in that position is tuned to the stimulation of visual input
element representing the negative range of the X dimension. Similarly, ‘X2’ and ‘X3’ represent
elements tuned to the middle and positive range of the X dimension, respectively. Although it is
less apparent in characterizing the nature of the maps before and after training, some changes can
still be observed when examining these maps in detail. First, there is a tendency to form larger
clusters during training. It can be seen that there are many single element clusters in the maps
before training, while this is unlikely to occur after training. Quantitatively speaking, the total
number of clusters in these three maps changed from 46 before training to 20 after training, a 57%
decrease. The total number of tuned elements changed from 108 to 94 in the meantime, only a
13% decrease. This indicates that on average clusters are bigger after training, as is evident by
visual inspection of Figure 5.5. In fact the average number of elements per cluster grows from
2.35 before training to 4.7 after training. The aggregation tendency is less apparent than we saw
in the MI output maps because of the intracortical connections in MI, which has the tendency to
form “Mexican Hat” shape of clusters even when the input connections are random before training.
Second, it can be seen that there is a dramatic shift of the elements that are tuned to the stimulation
of the same visual input element. There is little overlap between the same map before and after
training. This type of reorganization during training is believed to be important in forming the
correct input-output correlations, as will be seen in Section 5.3.2. Also the maps of X2 and X3 are
almost identical (with similarity measuring value of 0.95) because during training the hand position
could move to near the origin (shoulder) in the X dimension (X2) or to the back of the body (X3)
only when upper arm extensor muscle is strongly contracted. As a result, the X2 and X3 maps all
become correlated with E output maps, as will be seen in the next section.

5.3.2 Correlations Between the MI Input and Output Maps

In Section 5.3.1, the MI input and output maps have been shown to possess certain charac-
teristics (aggregating, etc.) after training. These properties are quite similar to those reported
in previous chapter. It is also interesting to study the relationships between the input maps and
the output maps. Unlike the relationships between proprioceptive input maps and motor output
maps, which are related to the same agonist/antagonist muscle groups, the correlation of input
maps from the visual afferent pathway and the output maps to the muscle efferent pathway are
more complicated.

Before training, there are no clear correlations between visual input and motor output features.
All of the feature distributions are random. While this is less likely to be seen by visual comparison
of feature maps, it is quite clear when using the similarity measuring method. Table 5.3 shows all of
the similarity values between visual input and motor output features before training. In this table,
each column represents the correlations of different visual input features to the same indicated
motor output feature, while each row represents the correlations of different motor output features
to the same visual input features. For example, the value 0.36 in column F and row X3 is the
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Figure 5.5: The MI input maps with respect to visual input (in the X dimension), before (left)
and after (right) training. X1, X2 and X3 code the negative, middle and positive range in the X
dimension.
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Z3 {1 0371039038037 0.37] 035

Table 5.3: Similarity values between visual input and motor output features before training.

similarity value between the motor output feature I' (upper arm flexor) and the visual input X3
(positive range of X). In this table, all of the similarity values are quite similar, ranging between
0.32 and 0.41. Since the distributions of features are initially quite random, no pair of features is
either strongly correlated (close to 1.0) or strongly anticorrelated (close to 0.0).

After training, the MI visual input maps and motor output maps have both reorganized to form
meaningful relationships, so that the model performs in a way that reflects the arm mechanism
constraints. Unlike the correlations between the proprioceptive input maps and the motor output
maps described in the previous chapter, the correlations between the visual input maps and the
motor output maps do not have a clear one-to-one correspondence. Instead, each visual input
feature can correlate with multiple motor output features, and vice versa. As a result, the maps of
two correlated features are no longer fully aligned, as was seen earlier. There is a partial alignment
of the maps. That is, the elements that represent both features are only partially overlapped, and
the degree of overlap depend on how strongly the two features correlate. For example, Fig. 5.6
shows the two maps, E (upper arm extensor)and Y3 (positive Y axis), that have very strong
correlations. As can be seen, there are quite a number of elements that are tuned to both features.
Other strongly correlated pairs include (F,Y1), (B,Z3) and (D,Z1), all having similarity values of
over 0.8. These strongly correlated pairs can be examined by visual comparison of their maps. For
other pairs of correlated features, the partial alignments of the maps make it less apparent during
visual comparison. It is therefore useful to use the quantitative approach, the similarity measuring
method, to investigate the correlations of input and output features.

Table 5.4 shows the matrix of all the similarity values between visual input and motor output
features after training. These values give a precise measurement of correlations of input and output
features. It is apparent from the table that after training, the input and output feature maps have
reorganized to form various degree of correlations between each other. The similarity values range
from 0.01 to 0.89. Those values bigger than 0.41 (the biggest value in Table 5.3) are believed to
represent pairs of features that are correlated. For a more intuitive display, Fig 5.7 shows the
density plot of the table using values in Table 5.4. The following paragraphs will show how these
feature correlations are consistent with the arm mechanism and constraints in details. Referring to
Fig. 5.2 is helpful in locating the hand position in space.

These relationships can be explained as follows:

1. Hand movements in the X dimension are mostly affected by E (upper arm extensor) and
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Figure 5.6: a. MI output map for upper arm extensor (E) after training (threshold=0.7); b. MI
input map for negative range of the Y dimension (Y3) from visual input (threshold=0.3).

I (upper arm flexor). Feature X1 is correlated with I because when the upper arm flexor
muscle is contracted, it is more likely to put the hand position in the negative range of the X
axis, which is in front of the body. On the other hand, feature X2 and X3 are both correlated
with E. When the upper arm extensor is contracted, the hand will move to the positive range
of the X axis (back of the body) if the lower arm is fully extended. In case the lower arm
is not fully extended, the final hand position would offset the displacement in the negative
X direction and therefore it is quite likely that the hand position is compromised into the
middle range of the X axis (around the Y-Z plane).

2. The hand movements in the Y dimension are affected by all the muscles. Feature Y1 is
strongly correlated with F, indicating that the contraction of upper arm extensor is more
likely to position the hand in the negative range of the Y axis (in front of the chest of a
human body). On the other hand, feature Y3 is correlated with E and O. It means when
upper arm extensor or the lower arm extensor is contracted, the arm is more likely to extend
into the positive range of the Y axis (outside the right side of the body).

Feature Y2 is correlated with both B (upper arm abductor) and D (upper arm adductor) at
the same time. This is quite interesting because not only one input feature is correlated with
two output features, but also the two output features are antagonists, which tend to move
the arm in opposite direction. On the other hand, this still reflects the arm mechanism and
constraints, because when either the upper arm abductor or the upper arm adductor (but
not both) are contracted, the elbow will be positioned very high or low near the X-Z plane.
In both cases, the hand position will be moving within middle range of the Y axis in parallel
with X-Z plane, no matter how the lower arm moves.
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E F B D 0] C

X1 | 0.02 |{0.59 | 0.30 | 0.37 | 0.07 | 0.18
X2 || 0.68 | 0.01 | 0.03 | 0.02 | 0.13 | 0.02
X3 | 0.58 | 0.01 | 0.02 | 0.01 | 0.06 | 0.01
Y1 | 0.03 | 0.89 | 0.12 | 0.08 | 0.07 | 0.37
Y2 || 0.04 | 0.13 | 0.46 | 0.63 | 0.05 | 0.22
Y3 || 0.87 | 0.02 | 0.05 | 0.05 | 0.67 | 0.06
Z1 | 0.03 | 0.11 | 0.03 | 0.88 | 0.06 | 0.07
Z2 || 0.28 | 0.23 | 0.04 | 0.04 | 0.24 | 0.35
Z3 | 0.03 | 0.05 | 0.84 | 0.01 | 0.03 | 0.06

Table 5.4: Similarity values between visual input and motor output features after training. Those
values that are bigger than the biggest values in Table 5.3 are in bold style.

3. The hand movements in the Z dimension are mostly affected by B (upper arm abductor) and
D (upper arm adductor). Feature Z1 is strongly correlated with D, which is quite natural
because contraction of upper arm adductor (folding the elbow toward the body) would lower
the elbow position and therefore more likely put the hand position in the low range. For the
same reason, Feature 73 is correlated with B.

Feature of 72 is not strongly correlated with any feature. However, Table 5.4 also shows
that 7Z2 is actually weakly correlated with all feature other than B and D, with similarity
values ranging from 0.24 to 0.35. It means that unless upper arm abductor or adductor are
contracted to move the elbow up or down, it is all somewhat likely to put the hand position
in the medium height.

4. The above paragraphs have shown the prominent motor output features that could effectively
influence the hand position in each dimension. On the other hand, in Table 5.4, there are other
less prominent similarity values which reflect some weak feature correlations. For example,
feature X1 is also somewhat correlated with B and D, with similarity values of 0.30 and 0.37,
respectively. That means, by clamping the upper arm vertically up or down, the hand would
move along the semi-circle in X-Z plane, and therefore quite likely to be positioned in the
negative range of the X axis, when the lower arm is in the middle range of the semi-circle. If
the lower arm is fully folded or extended, then the X coordinate of the hand position will be
close to 0, and therefore outside the negative of the X axis. This is why these two similarity
values are less than that of (Y2, B) and (Y2, D).

Another weakly correlated pair of features are Y1 and C, because the negative Y (in front of
the chest) can be achieved only when upper arm flexor is somewhat contracted (to position
the elbow near the X-Z plane ) and the lower arm flexor is contracted more than the lower arm
extensor. However the lower arm flexor cannot be fully contracted (fully folding) because that
will only maintain the hand position near the X-7 plane and therefore in the middle range of
the Y axis. That is why the similarity value of (Y'1,(') is not as big as (Y1, F).

5. In Table 5.4, there are also similarity values that are close to 0, reflecting the anti-correlations
between the features. Generally speaking, when one visual input feature is strongly correlated
with a motor output feature of one muscle, it is usually anti-correlated with the output feature
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Figure 5.7: A Schematic Density Plot of Table 5.4. Those similarity values bigger than 0.4 (strongly
correlated) are plotted as white blocks in their corresponding positions. The values smaller than
0.1 (anti-correlated) are plotted in black. Others (weak correlations) are plotted in grey.

of its antagonist muscle. The only exception is the pairs (Y2, B) and (Y2, D), with the reason
discussed in above paragraph. Another rule of thumb is that when a motor output feature
is correlated with one visual input feature in one extreme of a dimension (not middle range),
it is usually anti-correlated with the visual input feature in the other extreme of the same
dimension.

In summary, the above analysis shows that after training, the cortical input and output maps
have reorganized to reflect the arm mechanisms. It should be noted that these are qualitative anal-
yses based on quantitative measurements. The values in Table 5.4 not only reflect the qualitative
properties shown above, but also reflect how strongly they support these properties. Due to the
randomness of the initial connection strength and the training patterns, the similarity values in
Table 5.4 may not be the same in different simulations. I have run several simulations with different
initial connection strengths and training patterns, and all of the properties described above still
hold. Table 5.5 shows the similarity values in four other simulations with different initial weights
and training patterns as examples.
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E F B D 0 C E F B D 0 C

X1] 002  0.68 | 035 | 0.20 | 0.06 | 0.20 || X1 | 0.03 | 0.52 | 0.40 | 0.41 | 0.09 | 0.21
X2 ]0.75 | 001 | 002| 0.02] 018 | 0.03 || X2 |0.70 | 0.00 | 0.01 | 0.01 | 0.11 | 0.04
X3]0.61 001|001 0.01]0.04)0.01 X3)|0.60]| 000 | 0.01 | 0.01 | 0.03]0.01
Y1l | 002 | 0.74 | 0.08 | 0.07 | 0.05 | 0.26 || Y1 | 0.03 | 0.82 | 0.11 | 0.08 | 0.11 | 0.37
Y2 | 0.04 | 0.15 | 0.53 | 0.47 | 0.05 | 022 || Y2 | 0.04 | 0.13 | 0.48 | 0.47 | 0.05 | 0.24
Y3 | 077 | 0.04 | 0.05 | 0.06 | 0.76 | 0.07 || Y3 | 0.86 | 0.01 | 0.05 | 0.03 | 0.66 | 0.05
Z1 | 0.03 | 0.10 | 0.04 | 0.88 | 0.06 | 0.08 || Z1 | 0.04 | 0.09 | 0.03 | 0.81 | 0.06 | 0.11
Z2 | 031 | 0.26 | 0.03 | 0.03 | 0.24 | 0.34 || Z2 | 0.28 | 0.31 | 0.04 | 0.04 | 0.22 | 0.41
Z3 | 002 | 011 | 0.88 | 0.02 | 0.05 | 0.08 || Z3 | 0.03 | 0.08 | 0.83 | 0.02 | 0.06 | 0.08
E F B D 0 C E F B D 0 C

X1] 003 055|033 042 008 | 025 | X1 | 0.02 |0.64 | 031 | 0.32 | 0.09 | 0.20
X2 1082 001 | 004|002 032007 ]| X2|0.81| 001|003 ] 0.02] 0.28 | 0.03
X3 ]0.63 | 0.00 | 0.03 | 0.01 | 0.10 | 0.02 || X3 | 0.62 | 0.00 | 0.01 | 0.02 | 0.11 | 0.01
Y1l | 0.03 | 0.74 | 0.08 | 0.08 | 0.06 | 0.38 || Y1 | 0.02 | 0.79 | 0.07 | 0.06 | 0.08 | 0.30
Y2 | 0.04 | 0.12 | 0.45 | 0.46 | 0.04 | 0.23 || Y2 | 0.03 | 0.12 | 0.60 | 0.46 | 0.04 | 0.17
Y3 | 0.87 | 0.04 | 0.05 | 0.05 | 0.75 | 0.12 || Y3 | 0.83 | 0.02 | 0.07 | 0.05 | 0.76 | 0.07
Z1 | 0.03 | 0.09 | 0.03 | 0.84 | 0.07 | 0.07 || Z1 | 0.02 | 0.09 | 0.02 | 0.87 | 0.05 | 0.05
Z2 | 028 | 0.33 | 0.05 | 0.04 | 0.18 | 0.34 || 22 | 0.29 | 0.46 | 0.06 | 0.07 | 0.31 | 0.5
Z3 | 0.04 | 0.07 | 0.89 | 0.02 | 0.06 | 0.06 || Z3 | 0.02 | 0.08 | 0.85 | 0.02 | 0.05 | 0.08

Table 5.5: Similarity values between visual input and motor output features after training in four
other simulations with different initial weights and training patterns. Those values that are bigger
than the biggest values in Table 5.3 are in bold style.

5.4 Discussion

In the previous section, it was shown that the motor control model with visual inputs alone
can form feature maps in the motor cortex layer during unsupervised learning. These maps and
their relationships are important in achieving consistent control of the arm movement. The results
indicate that, by supplying random activation patterns alone in motor cortex, the initial random
cortical connections are able to self-organize to recognize the characteristics of arm mechanisms and
form meaningful input output relationships. This is in contrast to most previous models, which
are based on error minimizing instead of cortical maps. These models serve the purpose of certain
tasks (such as reaching), and do not concern about internal representation (maps) of the outside
side world.

In previous motor control model with proprioceptive input pathways (Chapter 4), we found
that an input feature and an output feature that are temporally correlated with each other have
their maps aligned. This is due to the one-to-one mapping of the input and output features. In the
motor control model with visual inputs, the input-output relationships become more complicated.
In this model, each input feature may be correlated with multiple output features, and vice versa.
In this situation, the feature correlations could not be as strong as those in proprioceptive model.
Assume an input feature A is correlated with output features B and C. As long as the maps of B
and C are different, A’s map cannot be fully aligned with B’s and C’s at the same time. So each
input feature can only correlate strongly (with complete map alignment) with at most one output
feature. In most cases, as we have seen, one feature is usually correlated with multiple features, with
different correlation strengths. The quantitative measurement of the feature correlation provide us
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with a way of studying these complicated input output relationships. The similarity value between
two features reflects the likelihood (or probability) that the two features are present simultaneous.
The amount of temporal correlations of external events is represented internally via the degree of
co-activation of cortical elements, i.e. as spatial correlations. When two external events are closely
associated (e.g., the output signal to contract a muscle and the input signal of increased tension
of the same muscle), the cortical elements representing these two features are largely the same
set. On the contrary, when two external event are mutually exclusive (e.g., the lengthening signals
of both an arm muscle and its antagonist), the internal activation representing the two features
become anti-correlated. That is, there are not likely to be any cortical elements responding strongly
to both features. When two external events are weakly associated, there is a certain amount of
overlap between the cortical elements tuned to both features.

Our current understanding of the coding of visual input information received by biological motor
cortex is quite limited beyond primary visual cortex. Anatomical studies show that there is no direct
neural projection from visual cortex to motor cortex: primary motor cortex receives visual infor-
mation via secondary visual and other association areas [Felleman & Essen, 1991; Asanuma, 1989].
The coding of visual information received by MI is not known at present. However, MI does receive
visual information coded in some form [Johnson, 1992]. Our model is a simple design attempting to
incorporate the visual information. On the other hand, this model can be viewed in a more general
framework: as a study of the one-to-many partially correlated feature associations. Basically, our
brains can be viewed, from the computational point of view, as a multi-layer network mapping input
sensory signals into output control signals. In each specific layer, the neuron elements responding
to an input feature provide correct output feature(s) to the next layer. If each layer is doing a
simple one-to-one feature mapping, then the entire brain functionality would be greatly limited. It
is apparent that the one-to-many partially correlated feature mapping is important for the brain
to exhibit versatile input output relationships and capabilities. By studying the relationships of
this type of input and output information, we can have a better understanding about the internal
representation and feature correlation of the brain.
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Chapter 6

Motor Control Model with Combined Proprioceptive
and Visual Inputs

In previous chapters, we have studied the motor control model based on proprioceptive input in
isolation and visual input in isolation. In this chapter, another variation of the motor control model
is studied. This version combines the models in the previous chapters, i.e., it is a model with both
proprioceptive and visual inputs.

Fig. 6.1 shows a schematic diagram of the model considered here. In this model, the motor
cortex layer (MI) and the proprioceptive cortex layer (PI) are 20 by 20 two-dimensional, hexagonally
tessellated layers, with each element connected to its six neighbors. Each element in PI is connected
to its corresponding element in MI and the surrounding MI elements up through a radius of four,
forming a coarse topographic ordering. Fach of twelve elements in the proprioceptive input layer,
coding the length and tension information of six muscles, is fully connected with the PI layer. And
each element in the visual input layer, coding hand position, is fully connected to the MI layer. The
MI layer is also fully connected to the lower motor neuron layer, which has six elements representing
the average activation levels of six muscles. The transformation from lower motor neuron activation
to proprioceptive input information and the hand position is based on the mechanism of the model
arm. The coding of visual information is the same as in the previous chapter.

6.1 Experimental Methods

The training method is similar to that used in previous chapters. All the interlayer weights
were randomly initialized, while the intralayer connections in PI and MI layer are of fixed strength.
Training was done by applying a patch of activation (of radius 1) at randomly selected MI regions.
The activation then spread to the lower motor neuron layer. For a given activation pattern in the
lower motor neuron layer, the length and tension information of muscles could be calculated, as
could the spatial information of hand position, according to the arm mechanism. The muscle length
and tension information was then supplied to the proprioceptive input layer. Simultaneously the
hand position information was supplied to the visual input layer, according to the visual coding
mechanism described in the previous chapter. The proprioceptive input layer sends activation to the
PI layer, which subsequently sent activation to MI. The visual input layer sent activation directly
to MI. The MI layer received feedback information from both the PI layer and the visual input
layer and the combined activation jointly determined the activation in the MI layer and thus muscle
activations. This formed a closed-loop system, in which no element activations were clamped in each
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Figure 6.1: The motor control system with both proprioceptive and visual inputs. The MI elements
send activation to lower motor neurons, which direct arm movements. Information about the arm
configuration and hand position is received by both the proprioceptive and visual input layers.
Both input layers then supply this information to the MI layer. Feedback to the MI layer influences
the MI output and thus forms a closed-loop.

layer. The spread of activation was governed by the activation rule using competitive distribution
of activation (Equation 3.8 and 3.9). After sufficient time steps (120 were used in this experiment),
the stablized activation levels were achieved in all of the layers. Then learning was conducted by
applying the competitive learning rule to all of the inter-layer connections (Equation 3.10 and 3.11).
The model was trained with 2000 learning cycles before the maps were examined.

The parameter values used in FEquations 3.8-3.11 of the model in this experiment are summarized
in Table 6.1 and 6.2. The learning threshold, «, is 0 in all layers. The parameters used in this
experiment are similar to those in the previous experiments. Any small change to any parameter
would not change the qualitative characteristics of the results discussed in following section.

After training, all of the cortical input and output maps, along with their relationships, were
examined. These maps include: PI input maps from proprioceptive inputs; MI input maps from
proprioceptive inputs; MI input maps from visual inputs; and MI output maps to lower motor
neurons. The measuring methods with these maps were similar to those described in previous
chapters. Basically, the output maps were determined by stimulating the cortical elements and
measuring the activities in the output layer. The input maps were measured by stimulating the
elements in the (proprioceptive or visual) input layer one by one and measuring the corresponding
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H Parameters H PI layer ‘ MI layer ‘ Motor Neurons H

Cs

-4.0

-2.0

-0.2

M

5.0

3.0

1.2

Table 6.1: Parameters used in activation update rule.

H Parameters H Arm to PI ‘ PI to PI ‘ PI to MI ‘ MI to MI ‘ MI to Motor ‘ Visual to MI H

q 0.04 0.0001 [ 0.0001 [ 0.0001 0.0001 0.0001
p 1 1 1 1 2 1
< 0.8 0.7 0.3 0.4 0.005 5.0
I | 02 | NA [ 02 | NA | 0.1 \ 0.1 |

Table 6.2: Parameters used in activation dispersal rule and learning rule.

cortical activities. In both cases, the elements that were activated above a certain threshold were
used during map drawing. Also, in the measurement of input maps, the corresponding input
layer was stimulated and then clamped, and cortical activations were measured after activation
stablization was achieved. In order to study the relationships between the input maps and output
maps, the similarity measuring method of Equation 4.1 was also used to quantitatively measure
the correlations of input and output features.

6.2 Results

6.2.1 PI Input Maps with Respect to the Proprioceptive Inputs

Fig. 6.2 shows the PI input maps with respect to proprioceptive inputs, before (left) and after
(right) training. Only the maps with respect to the length input of the upper arm extensor and
flexor muscles are shown. Length and tension maps for other muscles show similar characteristics
(See Appendix A.3.1 for a complete list of maps of all muscles). From Fig. 6.2, it is clear that
activation clusters formed both before and after training due to the “Mexican Hat” activation
patterns induced by intracortical connections. However, the clusters were more regularly arranged
after training. This indicated the self-organization of the proprioceptive cortical maps during
training. A similar self-organization occurred in the motor control model with proprioceptive input
only, as described in Chapter 4. No qualitative difference between the model with proprioceptive
input alone and the current model was observed.

The self-organization of feature maps in the proprioceptive cortex can be more clearly seen
when examining the relationships between these input maps. As in the motor control model with
proprioceptive input only, the length map of a particular muscle matches well with the tension map
of its antagonist muscle. For example, Fig. 6.3 shows that the length map of the upper arm extensor
matches the tension map of upper arm flexor; and the length map of the upper arm flexor matches
the tension map of upper arm extensor. For other pairs of muscles, there are similar relationships.
This means that this previously described map alignment property was preserved after visual input
was added into the model.

Table 6.3 shows two tables of similarity values, before (left) and after (right) training, respec-
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Figure 6.2: The PI input maps before (left) and after (right) training. Only length maps for the
upper arm extensor (E) and flexor (F) are shown (threshold=0.2).
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Figure 6.3: Comparison of PI input maps with respect to length (left) and tension (right) after
training. Only maps for the upper arm extensor (E,e) and flexor (F.f) are shown (threshold=0.2).
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E F B D 0] C E F B D 0] C
0.11 | 0.10 | 0.26 | 0.21 | 0.17 | 0.15 0.01 | 0.84 | 0.17 | 0.08 | 0.11 | 0.06
0.32 1 0.16 | 0.11 | 0.17 | 0.17 | 0.17 0.91 | 0.00 | 0.14 | 0.01 | 0.02 | 0.42
0.12 | 0.15 | 0.20 | 0.20 | 0.05 | 0.37 0.01 | 0.11 | 0.00 | 0.96 | 0.02 | 0.13
0.12 1 0.19 | 0.07 | 0.16 | 0.35 | 0.20 0.01 | 0.05 | 0.80 | 0.00 | 0.24 | 0.00
0.13 1 0.17 { 0.14 | 0.15 | 0.18 | 0.14 0.56 | 0.06 | 0.17 | 0.04 | 0.02 | 0.85
0.12 1 0.19 | 0.10 | 0.14 | 0.11 | 0.29 0.04 | 0.28 | 0.26 | 0.02 | 0.94 | 0.00

OO | &|lT|| @

OO | &|lT|| @

Table 6.3: Similarity values between length and tension input features in proprioceptive cortex
before (left) and after (right) training. Those values that are bigger than 0.7 are in bold style.

tively. Each row of the table is for a particular muscle’s tension feature, while each column is for a
particular muscle’s length feature . Each value in the table represents the similarity measurement
between the length feature of the corresponding column and the tension feature of the correspond-
ing row. For example, the value 0.11 in the upper left corner of the table represents the similarity
measurement between the length and tension features of the upper arm extensor before training.
Before training, similarity values ranges from 0.05 to 0.37, due to the activations produced by
the initial random weights. After training, some pairs of features exhibited strong correlations.
Those pairs having similarity values bigger than 0.8 are the length and tension features of mutually
antagonist muscles (bold type in Table 6.3). This is clear evidence that the relationships within
proprioceptive cortical input maps in the original model still holds in this variation of the model,
and that this kind of relationship is clearly the result of training.

6.2.2 MI Proprioceptive Input Maps

MI input maps with respect to the proprioceptive input also formed after training. After train-
ing, the activation clusters were slightly more uniform in size and regularly arranged. Particularly,
the relationship between the length and tension input maps after training clearly reflected the arm
mechanism and constraints. Fig. 6.4 shows the MI length (left) and tension (right) input maps of
the upper arm extensor (E,e) and flexor (F,f) after training. It is quite clear that the length map of
the upper arm extensor (E) matches the tension map of upper arm flexor (f); and the length map
of the upper arm flexor (') matches the tension map of upper arm extensor (e). This relationship
formed because during training, the contraction of one muscle usually increased its tension and
decreased its length (and therefore increased its antagonist’s length). This relationship was true
for both PI and MI layer, indicating that although some transformation occured in the propriocep-
tive input maps from PI to MI, resulting in complete different maps in two cortices, same internal
correlations were still preserved.

The relationships between the length and tension input maps were also examined with the
similarity measuring method. Table 6.4 shows the similarity values between length and tension
input features in motor cortex before (left) and after (right) training, respectively. Before training,
the similarity values ranged randomly from 0.26 to 0.63. After training, those pairs that are strongly
correlated (having similarity values bigger than 0.8) happened to be the length and tension features
of mutually antagonist muscles.

In summary, the relationships in the proprioceptive input patterns were captured by both PI
and MI during training, and were reflected in the post-training proprioceptive input maps in both
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Figure 6.4: Comparison of MI input maps with respect to length (left) and tension (right) after
training. Only maps for the upper arm extensor (E,e) and flexor (F.,f) are shown (threshold=0.4).
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E F B D 0] C E F B D 0] C
0.42 1 0.42 | 0.47 | 0.50 | 0.46 | 0.48 0.00 | 0.85 | 0.04 | 0.00 | 0.04 | 0.11
0.63 | 0.50 | 0.43 | 0.59 | 0.41 | 0.46 0.99 | 0.00 | 0.05 | 0.00 | 0.03 | 0.27
0.45 1041 | 0.48 | 0.48 | 0.26 | 0.52 0.00 | 0.02 | 0.02 | 0.99 | 0.02 | 0.20
0.37 1043 | 0.33 | 0.32 | 0.47 | 0.49 0.02 | 0.01 | 0.94 | 0.03 | 0.05 | 0.01
0.40 |1 0.39 | 0.37 | 0.42 | 0.39 | 0.39 0.50 | 0.05 | 0.03 | 0.00 | 0.01 | 0.78
0.52 1 0.48 | 0.41 | 0.48 | 0.35 | 0.57 0.05 | 0.20 | 0.10 | 0.01 | 0.97 | 0.00

OO | &|lT|| @

OO | &|lT|| @

Table 6.4: Similarity values between length and tension input features in motor cortex before (left)
and after (right) training. Those values that are bigger than 0.7 are in bold style.

cortical layers. These experimental results are similar to those reported in the original motor control
model without visual input, as described in Chapter 4. Thus, adding visual inputs to the model
had little impact on the proprioceptive maps that formed in PI and MI.

6.2.3 MI Output Maps and Their Relation to Proprioceptive Input Maps

The output map of the MI layer to the lower motor neurons were also examined with this
model. Fig. 6.5 shows the MI output maps of upper arm extensor muscle before (left) and after
(right) training (See Appendix A.3.3 for a complete list of maps of all muscles). Before training,
the output maps exhibited a random arrangement. After training, the elements representing the
same feature tended to form clusters that are uniform in size and arrangement. The maps of other
muscles showed similar characteristics. This indicates the self-organization of cortical feature maps
during training, and this kind of self-organization also occurred in the models with proprioceptive
or visual input only, as described in previous chapters.

The effect of self-organizing feature maps in MI was more clearly seen when the relationships
between the MI output maps and the MI proprioceptive input maps were studied. Fig. 6.6 shows
the comparison of the MI length and tension input maps of upper arm extensor and the MI output
maps of upper arm extensor and flexor after training. It is clear that the length map of upper arm
extensor (Fig. 6.6a) matches the output map of upper arm flexor (Fig. 6.6d); while the tension
map of upper arm extensor (Iig. 6.6b) matches the output of upper arm extensor (Fig. 6.6c).
Examining maps of other muscles revealed a general rule: the length input map of one muscle
matches the motor output map of its antagonist muscle; and the tension input map of one muscle
matches the motor output map of itself. This rule is also clearly seen with the similarity measuring
method. Table 6.5 summarized the similarity values between MI input and output features before
(left) and after (right) training. In each column of the table, the values correspond to the same
output feature, represented by a capital letter on top of the column. In each row of the table, the
values correspond to the same length or tension input feature, represented by a capital or lower case
letter, respectively, on the left hand side of the row. For example, in the table on the left hand side,
the value 0.48 in the row of ’E” and column of "B’ is the similarity value between the length input
feature of upper arm extensor (E) and the motor output feature of upper arm abductor (B) before
training. In the same table, the value 0.45 in the row of e’ and the column of 'E’ is the similarity
value between the tension input feature of upper arm extensor (e) and the motor output feature
of upper arm extensor (E). From Table 6.5, one can see that before training the similarity values
ranged randomly from 0.44 to 0.54, showing no strong correlations. After training, the similarity
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Figure 6.5: The MI output maps before (left) and after (right) training. Only maps for the upper
arm extensor (E,e) are shown (threshold=0.4).
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Figure 6.6: The comparison of the MI input maps with respect to the length (a) and tension (b)
of upper arm extensor, and the MI output maps of upper arm extensor (c) and flexor (d) after
training (threshold=0.4).
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E F B D 0] C E F B D 0] C
E ||049]0.49| 0.48 | 0.49 | 0.47 | 0.47 E || 0.05 |0.96 | 0.11 | 0.10 | 0.31 | 0.18
F ||048 | 0.47 | 0.48 | 0.48 | 0.51 | 0.45 F ||0.81 | 0.02 | 0.08 | 0.07 | 0.29 | 0.28
B ||045] 047|048 | 0.46 | 0.47 | 0.47 B || 0.13 | 0.14 | 0.05 | 0.94 | 0.16 | 0.23
D || 047 ] 0.48|0.51 | 0.49 | 0.49 | 0.51 D || 0.08 | 0.05 | 0.97 | 0.07 | 0.05 | 0.05
O || 0.50 | 0.48 | 0.49 | 0.46 | 0.47 | 0.48 O 0.12 | 0.09 | 0.08 | 0.11 | 0.08 | 0.89
C || 0.50 | 0.50 | 0.53 | 0.51 | 0.52 | 0.54 C | 0.26 | 0.31 | 0.29 | 0.08 | 0.74 | 0.07
e || 045|046 | 049 | 0.46 | 0.47 | 0.46 e || 0.94 | 0.03 | 0.06 | 0.08 | 0.43 | 0.13
f {1049 | 0.48 | 0.50 | 0.51 | 0.49 | 0.46 f 0.05 | 0.95 | 0.10 | 0.09 | 0.30 | 0.17
b || 0.44 | 0.47 | 0.44 | 0.45 | 0.47 | 0.48 b || 0.08 | 0.05 | 0.96 | 0.07 | 0.05 | 0.04
d || 0.51 ] 0.51 | 0.50 | 0.49 | 0.52 | 0.51 d || 0.10 | 0.08 | 0.06 | 0.94 | 0.13 | 0.14
o || 045|047 |049 | 0.45| 044 | 0.47 o || 0.26 | 0.52 | 0.08 | 0.08 | 0.82 | 0.11
¢ [|0.49 1047 |0.48 | 0.49 | 0.49 | 0.46 c 0.10 | 0.10 | 0.06 | 0.09 | 0.06 | 0.88

Table 6.5: Similarity values between length and tension input features in motor cortex before (left)
and after (right) training. Those values that are bigger than 0.7 are in bold style.

values changed dramatically to reflect the correlations of the self-organized feature maps. The
upper half of the table on the right hand side illustrates the correlations between the length input
feature and the motor output feature after training. One can see that pairs of antagonist muscles
have strong correlations, with similarity values from 0.74 to 0.97. The lower half of the table on the
right hand side illustrates the correlations between the tension input feature and the motor output
feature after training. It is quite clear that all of the large similarity values (from 0.82 to 0.96) are
on the diagonal line, indicating that the tension input feature and the motor output feature of the
same muscle are strongly correlated. All of these properties are natural results of the training. The
same properties occured in the motor control model with proprioceptive input only.

6.2.4 MI Visual Input Maps and Their Relation to MI Output Maps

The formation of proprioceptive input maps and the motor output maps, as well as their
relationships to each other, are similar to the motor control model with proprioceptive input only.
In this section, the MI visual input maps are summarized, as well as their relationships with the
motor output maps. It is particularly interesting to compare the results in this model with the
model in Chapter 5, which has visual input only.

Fig. 6.7 shows MI visual input maps before (left) and after (right) training. Only the visual input
maps for the X dimension are shown. The maps for other dimensions show similar characteristics
(See Appendix A.3.4 for a complete list of maps of all dimensions). The representation of the visual
input maps is the same as that described in Chapter 5. When comparing the visual input maps
before and after training, it is quite clear that the maps before training are quite different from
those after training, indicating some kind of self-organization during training. Although the maps
both before and after training formed activation clusters, the clusters after training were more
uniform in size and shape. Statistically, before training the average number of elements in each
cluster in the three X-dimensional input maps was 3.04, with standard deviation of 1.41. After
training average size of clusters increased to 3.46, with standard deviation decreased to 0.85. So
the activation clusters after training became bigger and varied less in size.
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Figure 6.7: The MI visual input maps before (left) and after (right) training. Only the MI input
maps for the X dimension are shown (threshold=0.3).
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Figure 6.8: Comparison of MI motor output map with MI input map after training. The upper arm
extensor (E) of MI output map matches that middle range of the X dimension (X2) of visual input
map; The upper arm flexor (I') of MI output map matches the negative range of the X dimension
(X1) of visual input maps.
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E F B D 0] C E F B D 0] C

X11]0.43|0.41]|041|0.41]0.44 | 0.43 X1 0.05|0.88 | 0.11 | 0.21 | 0.25 | 0.14
X2 1039|042 041 |0.42]0.38 | 0.42 X2 | 0.90 | 0.03 | 0.05 | 0.08 | 0.37 | 0.15
X3 1] 0.42 | 0.46 | 0.43 | 0.40 | 0.45 | 0.42 X3 1] 0.86 | 0.03 | 0.05 | 0.08 | 0.35 | 0.09
Y1 | 0.46 | 0.43 ]| 042 | 0.43 | 0.43 | 0.41 Y1 | 0.04 | 0.94 | 0.10 | 0.09 | 0.26 | 0.17
Y2 || 0.45 | 0.40 | 0.42 | 0.42 | 0.41 | 0.41 Y2 || 0.07 | 0.05 | 0.80 | 0.28 | 0.06 | 0.06
Y3 || 0.41 ] 045|045 | 0.43 047 | 0.44 Y3 || 0.71 | 0.07 | 0.06 | 0.11 | 0.81 | 0.06
Z1 ] 0.38 | 0.40 | 0.41 ]| 0.39 | 0.41 | 0.44 Z1 ] 0.11 | 0.06 | 0.04 | 0.91 | 0.13 | 0.12
72 ] 0.40 | 0.41 | 0.41 | 0.40 | 0.43 | 0.40 Z2 || 0.33 | 0.17 | 0.05 | 0.10 | 0.21 | 0.68
73 ) 041 | 0.45 ] 0.41 | 043 | 0.43 | 0.41 Z3 || 0.08 | 0.04 | 0.95 | 0.05 | 0.05 | 0.04

Table 6.6: Similarity values between visual input and motor output features before (left) and after
(right) training. Those values that are bigger than 0.6 are in bold style.

The relationships between visual input maps and the motor output maps in MI were also
examined. Due to the nature of the such relationships, the correlations between the visual input
features and the motor output features are usually not a one-to-one mapping. Although the visual
comparison of maps is viable for some strong correlations, such as Fig. 6.8a and b, or Fig. 6.8¢c
and d, other correlations are not always obviously seen with visual inspection. In such a situation,
the similarity measuring method is necessary to make quantitative measurements. Table 6.6 shows
the similarity values between visual input and motor output features before and after training. It
is clear that before training, motor output maps and visual input maps are randomly correlated,
making the similarity values range from 0.38 to 0.46. After training, however, clear correlations
formed with greatly diversified similarity values For intuitive illustration, Fig. 6.9 gives a density
plot to represent the similarity values in Table 6.6b. The analysis of these values indicated that
after training, certain kinds of correlations between visual input and motor output features have
become established, reflecting the likelihood of simultaneous presence of particular pairs of features.
For example, when the upper arm abductor muscle (B) is contracted, it will move the arm upward
and therefore more likely put the hand in the positive range of the Z dimension (Z3) (please refer
to Fig. 5.2 in Page 46 showing axes X, Y and Z relative to a human body). Thus, the similarity
value between B and 73 is very large (0.95) after training, indicating a strong correlation between
these two features. In most cases, the correlations in Table 6.6b are similar to those observed in
the model with visual input only, as illustrated by Table 5.4. In short, those strongly correlated
pairs are (X1, F), (X2, E), (X3, E), (Y1, F), (Y3, E), (Y3, O), (Z1, D) and (Z3, B). In general,
when one visual input feature is strongly correlated with the motor output feature of a muscle, it
is usually anti-correlated (with similarity values smaller than 0.1) with its antagonist muscle.

However, there are also differences:

1. In the visual input only model, Y2 is simultaneously correlated with B and D, with similarity
values of 0.46 and 0.63, respectively (Table 5.4). In this model, Y2 is strongly correlated with
B (0.80), but not so strongly correlated with D (0.28).

2. the In previous model, 72 is weakly correlated with E, F, O and C, with similarity values of
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Figure 6.9: A Schematic Density Plot of Table 6.6b. Those similarity values bigger than 0.7
(strongly correlated) are plotted as white blocks in their corresponding positions. The values
smaller than 0.1 (anti-correlated) are plotted in black. Others (weak correlations) are plotted in

grey.

0.28, 0.23, 0.24 and 0.35, respectively (Table 5.4). In this model, Z2 is strongly correlated
with C (0.68). Its similarity values with E, ', O are 0.33, 0.17 and 0.21, respectively.

The above differences indicate that some visual input features that were previously correlated
with multiple features now correlate with only one of them. However, this does not mean that every
visual input feature is correlated with only one motor output feature in this model. For example,
Y3 is correlated with both E and O, with similarity values of 0.71 and 0.81, respectively. On the
other hand, the above features (Y2 and 72) have some spatial symmetric properties. For example,
contracting the upper arm abductor (B) or adductor (D) (hence moving the arm up or down)
should have the same likelihood of putting the arm in the middle range of Y axis (Y2). There is
no reason why Y2 should be correlated stronger with one than the other. It was conjectured that
the initial connections and the random training patterns in this individual simulation have caused
this biased correlation. Therefore, multiple simulations with different initial connection strengths
and training patterns were conducted to confirm this. Table 6.7 shows the similarity values of four
additional different simulations of this model, with the same parameters but different initial weights
and training patterns. The results are summarized as follows (referring to Fig. 5.2 in Page 46 would

be helpful):

1. All of the visual input features other than Y2 and 72 in these four simulations have the
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E F B D 0 C E F B D 0 C

X1] 005 092|019 | 020 | 0.22 | 0.16 || X1 | 0.06 | 0.91 | 0.14 | 0.13 | 0.10 | 0.11
X2 1091|003 | 005 | 0.08 | 0.44 | 0.13 || X2 | 0.92 | 0.07 | 0.08 | 0.08 | 0.78 | 0.10
X3 1085|002 005 ]| 007|037 |011]] X3 ] 0.86| 0.07 | 0.08 | 0.08 | 0.72 | 0.07
Y1l | 005|093 | 0.11 | 0.14 | 0.19 | 0.17 || Y1 | 0.05 | 0.92 | 0.07 | 0.08 | 0.09 | 0.14
Y2 | 009 | 0.13 | 0.79 | 0.29 | 0.07 | 0.12 || Y2 | 0.08 | 0.13 | 0.45 | 0.70 | 0.10 | 0.14
Y3 | 0.66 | 0.07 | 0.05 | 0.10 | 0.87 | 0.11 || Y3 | 0.89 | 0.08 | 0.09 | 0.08 | 0.89 | 0.07
Z1 | 0.09 | 0.12 | 0.04 | 0.92 | 0.13 | 0.12 || Z1 | 0.05 | 0.08 | 0.07 | 0.90 | 0.08 | 0.10
Z2 | 0.12 | 0.78 | 0.08 | 0.12 | 0.38 | 0.28 || Z2 | 0.31 | 0.75 | 0.10 | 0.08 | 0.35 | 0.19
Z3 | 0.09 | 007 | 0.94 | 0.02 | 0.04 | 0.09 || Z3 | 0.09 | 0.14 | 0.91 | 0.09 | 0.09 | 0.12
E F B D 0 C E F B D 0 C

X1] 003 081|018 | 025 | 0.10 | 0.20 || X1 | 0.05 | 0.77 | 0.52 | 0.14 | 0.11 | 0.41
X2 1093|005 | 0.09 | 006 | 0.18 | 0.05 || X2 | 0.79 | 0.03 | 0.06 | 0.16 | 0.25 | 0.28
X3 1089 | 005|008 | 006|013 |0.05]| X3]0.84 | 0.02 | 0.056 | 0.16 | 0.25 | 0.20
Y1l | 003 | 0,91 | 0.12 | 0.05 | 0.10 | 0.20 || Y1 | 0.03 | 0.87 | 0.18 | 0.02 | 0.09 | 0.42
Y2 | 0.04 | 0.056 | 0.09 | 0.94 | 0.07 | 0.13 || Y2 | 0.14 | 0.03 | 0.16 | 0.88 | 0.05 | 0.21
Y3 | 0.16 | 0.09 | 0.08 | 0.05 | 0.94 | 0.05 || Y3 | 0.39 | 0.09 | 0.14 | 0.07 | 0.88 | 0.35
Z1 | 0.05 | 0.04 | 0.04 | 0.92 | 0.07 | 0.08 || Z1 | 0.17 | 0.03 | 0.10 | 0.92 | 0.06 | 0.19
72 | 0.12 1 0.85 | 0.13 | 0.05 | 0.11 | 0.25 || Z2 | 0.25 | 0.32 | 0.08 | 0.05 | 0.24 | 0.46
Z3 | 0.07 | 0.18 | 0.93 | 0.05 | 0.10 | 0.17 || Z3 | 0.05 | 0.23 | 0.89 | 0.08 | 0.12 | 0.30

Table 6.7: Similarity values between visual input and motor output features after training in four
other simulations with different initial weights and training patterns. Those values that are bigger
than 0.7 are in bold style.

same kind of correlations with motor output features as those in Table 6.6. Therefore, it is
reasonable to say that these correlations are robust and independent of the initial network
condition and training sequences. Also, these correlations are the same as in the model
with visual input only, indicating that adding the proprioceptive inputs did not affect these
relationships.

2. Y2 is strongly correlated with either B or D in different simulations. In all five simulations
summarized in Tables 6.6 and 6.7, the similarity values between Y2 and (B,D) are (0.80, 0.28),
(0.79,0.29), (0.45, 0.70), (0.09, 0.94), (0.16, 0.88), respectively. These values indicate that Y2
could be strongly correlated with either B or D, but not both. Recall that in the model with
visual input only in Chapter 5, the similarity values between Y2 and (B,D) in five different
simulations were (0.46, 0.63), (0.53, 0.47), (0.48, 0.47), (0.45, 0.46), (0.60, 0.46). This means
that adding the proprioceptive inputs into the model could prohibit Y2 from being strongly
correlated with B and D at the same time. Because of the presence of proprioceptive input,
output features of antagonist muscles tend to be anti-correlated, making it impossible for an
input feature to be strongly correlated with two anti-correlated feature at the same time.

3. 72 1is strongly correlated with one of E, I, O, C. The similarity values between 72 and (E, F,
0, C) in five different simulations are (0.33, 0.17, 0.21, 0.68), (0.12, 0.78, 0.38, 0.28), (0.31,
0.75, 0.35, 0.19), (0.12, 0.83, 0.11, 0.25), (0.23, 0.32, 0.24, 0.46), respectively. In contrast, in
the model with visual input only, Y2 is quite evenly correlated with E,F/,0,C, with similarity
values of five different simulations of (0.23, 0.23, 0.24, 0.35), (0.32, 0.26, 0.24, 0.34), (0.28,
0.31, 0.22, 0.41), (0.28, 0.33, 0.18, 0.34), (0.29, 0.46, 0.31, 0.50), respectively. This means
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that adding the proprioceptive inputs into the model could break the balance between evenly
correlated features.

In summary, the visual input has no explicit influence on the nature of the proprioceptive input
maps and their relationship with motor output maps. On the other hand, the proprioceptive input
does influence the visual input maps. With the presence of proprioceptive input, a visual input
map can no longer be strongly correlated with a pair of antagonist muscles simultaneously. Even
though this visual input has temporal correlation with both of the antagonist pairs, it can only
produce spatially correlated maps with one of them.

6.2.5 The Relationship between Proprioceptive Input Maps and Visual Input
Maps in MI

E F B D 0 C e f b d 0 c

X1 |{0.90 | 0.00 | 0.16 | 0.01 | 0.03 | 0.20 || 0.00 | 0.90 | 0.01 | 0.10 | 0.37 | 0.03
X2 | 0.00 | 0.85 | 0.04 | 0.01 | 0.06 | 0.07 || 0.96 | 0.00 | 0.01 | 0.03 | 0.07 | 0.05
X3 || 0.00 | 0.78 | 0.05 | 0.00 | 0.01 | 0.07 || 0.92 | 0.00 | 0.00 | 0.04 | 0.09 | 0.01
Y1 | 0.97 | 0.00 | 0.06 | 0.00 | 0.04 | 0.23 || 0.00 | 0.98 | 0.00 | 0.01 | 0.46 | 0.05
Y2 | 0.01 | 0.02 | 0.20 | 0.79 | 0.03 | 0.14 || 0.00 | 0.00 | 0.80 | 0.24 | 0.00 | 0.00
Y3 | 0.03 | 0.38 | 0.06 | 0.00 | 0.01 | 0.53 || 0.57 | 0.03 | 0.00 | 0.04 | 0.53 | 0.00
Z1 || 0.01 | 0.01 | 0.91 | 0.02 | 0.04 | 0.01 || 0.02 | 0.00 | 0.02 | 0.96 | 0.00 | 0.02
Z2 || 0.09 | 0.32 | 0.12 | 0.00 | 0.58 | 0.07 || 0.28 | 0.09 | 0.00 | 0.05 | 0.11 | 0.59
Z3 | 0.00 | 0.02 | 0.01 | 0.98 | 0.02 | 0.19 || 0.00 | 0.00 | 0.98 | 0.02 | 0.00 | 0.00

Table 6.8: Similarity values between visual input and length (left) and tension (right) proprioceptive
input features after training. Those values that are bigger than 0.5 are in bold style.

The relationship between proprioceptive input maps and visual input maps in the MI layer
was also studied. The MI layer receives sensory input information from both proprioceptive and
visual afferents. The coexistence of proprioceptive input maps and visual input maps in the same
cortical layer resulted in interesting relationships between them. In fact, the relationships between
proprioceptive and visual input maps can be inferred indirectly from the relationships between
proprioceptive input maps and motor output maps and the relationships between visual input
maps and motor output maps. It is already known that the MI motor output maps of a particular
muscle is aligned with the length input map of its antagonist muscle and the tension map of its own
muscle. It is also known that motor output maps form complicated spatial relationships (alignment,
partial alignment, mutual exclusion) with visual input maps. As a result, it can be inferred that
the correlation of a muscle’s tension input map and a visual input map will be similar to the
correlation of the same muscle’s motor output map and the visual input map; while the correlation
of a muscle’s length input map and a visual input map will be similar to the correlation of the
antagonist muscle’s motor output map and the visual input map. Table 6.8 shows the similarity
values between proprioceptive input maps and visual input maps. It is clear that the right half of
the table (with a small letter on top of each column to indicate tension) is similar to Table 6.6b.
And the left half of the table (with a capital letter on top of each column to indicate length) is
similar to Table 6.6b only after each pair of antagonist muscles swap their positions. The detailed
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relationships between individual proprioceptive input maps and visual input maps are omitted here,
since very similar relationships have been described in previous sections for the visual input maps
and motor output maps. Again, these relationships reflect the temporal correlations between input
features during the training process. The multiple coexisting sensory input maps and motor output
maps in motor cortex form similar relationships so that single layer of cortical elements are able to
receive sensory input and send motor output in a consistent way.

6.3 Discussion

In the previous sections, it has been shown that the motor control model combining visual and
proprioceptive input in motor cortex can form feature maps in the cortical layers during unsuper-
vised learning. By putting activation patterns at randomly selected locations in the motor cortex,
the initially random connections self-organized to reflect the arm mechanisms and constraints dur-
ing training. The self-organized cortical feature maps, along with their relationships, are important
in achieving consistent control of arm movement.

This model is different from the previously described motor control models in that it has both
proprioceptive and visual inputs. Therefore, it is interesting to see how the combination of these
two kinds of input information influence map formation in both proprioceptive and motor cortices.
From the results reported earlier, we know that most results are similar to the models with single
input pathways alone. In the proprioceptive input pathways, more regularly arranged activation
patterns were obtained in the PI and MI layers after training in both the current model and the
model with proprioceptive input only. The same kind of relationships were established between
length and tension input maps in both models. These results indicate that adding the visual input
to the model does not influence the nature of the proprioceptive input maps in a significant way.
Moreover, the MI output maps to the lower motor neurons also formed in the same fashion in both
models, from initial random maps before training to clusters like formations after training. The
correlations between MI proprioceptive input maps and the motor output maps are also the same
for both models. This indicates that in the current model, the MI layer, although combining input
activations from both proprioceptive and visual pathways, could reconcile the information received
and maintain the same correlations between proprioceptive input and motor output maps as the
model without visual input. In summary, adding visual afferent pathways did not significantly affect
the self-organization along proprioceptive pathways.

On the other hand, formation of visual input maps was altered in some ways by the propriocep-
tive input pathways, when comparing the current motor control model with the model having visual
input only. Looking at the visual input maps before and after training did not show much difference
between the two models. In both models, the post-training visual input maps were slightly more
regular in size of clusters and arrangements. However, the relationships between the visual input
maps and the motor output maps were no longer the same for both models, according to the results
reported in earlier sections. Particularly, the Y2 feature, which used to be strongly correlated with
both B and D at the same time in the model with visual input only, now is only strongly correlated
with one of them in each simulation. Whether Y2 is correlated with B or D depends on initial
weights and training patterns. From the analysis in Chapter 5, it is presumed that the correlation
strength between two features reflects the likelihood of simultaneous presence of these two features
during training. Since contracting either the upper arm abductor (B) or the upper arm adductor
(D) is going to move the elbow up or down, and is therefore more likely to position the hand in
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the middle range of the Y dimension (Y2), it is not surprising to see that Y2 is strongly correlated
with B and D. Although B and D are output features of a pair of antagonist muscles, in the model
with visual input only, there is no information concerning the relationships of the contraction of
antagonist muscles during training. However, after the proprioceptive input pathway was added,
certain kind of anti-correlations appeared between mutually antagonist muscles. The lengthening
of one muscle will certainly cause shortening of its antagonist muscle. Therefore the length maps
of antagonist muscles in both PI and MI layers became mutually exclusive (i.e. no overlapping
at all) after training. Due to the relationships between the MI proprioceptive input maps and
motor output maps, the motor output maps of mutually antagonist muscles also became mutually
exclusive. This means that an element in the MI layer is not likely to activate both B and D at the
same time. On the other hand, training will causes Y2 to be associated with B and D, because of
the frequent occurrence of features pairs (Y2,B) or (Y2,D) during training. The network tried to
compromise this contradiction by letting Y2 be strongly correlated with either B or D, depending
on the initial condition of the network. Similar things also happened to the correlations between
72 and E,F,0,C. In the model with visual input only, Z2 was weakly correlated with one of the
four muscles, showing no strong correlations with any individual one. In the model with combined
proprioceptive and visual inputs, the the correlations of 722 with any pair of antagonist muscles at
the same time were discouraged, causing one of the four muscle (E,F,0,C) to be strongly correlated
with Z2. In summary, adding proprioceptive inputs changed the visual input maps’ correlation with
the motor output maps, eliminating the situations where one visual input feature correlated simul-
taneously with two output features of antagonist muscles. The influence of adding proprioceptive
inputs is to differentiate the antagonist muscles, causing anti-correlated input and output maps
for antagonist muscles. This model tells us that although visual input alone can produce consis-
tent input-output maps, it is not able to identify antagonist muscle pairs; proprioceptive input is
necessary to help distinguish the antagonist muscles.
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Chapter 7

Some Analysis of Cortical Feature Map Formation

In previous chapters, a number of versions of motor control models were presented. Cortical
feature map formation in these models and map relationships were examined. It has been shown
that cortical feature maps form spontaneously in the models via unsupervised learning, and the
relationships in these maps reflected the internal characteristics of the model’s control task. Hence
it would be interesting to explore the mathematical basis of map formation when multiple maps
are present simultaneously. For example, one could ask the question of why the observed map
relationships form via training, and under what conditions such relationships form. This chapter
tries to answer this type of question from a simplified mathematical point of view.

Because of the complexity of the motor control model, and the non-linear dynamics of the math-
ematical formulas imposed on the model, it may appear virtually impossible to do a mathematical
analysis in a comprehensive fashion. Nevertheless, analysis of some aspects of the model, as well as
analysis of a simplified version of the model, can still give us insight into the driving force behind
the emergent phenomena.

This chapter has primarily four parts. First, an abstract model will be described in order to
simplify the analysis. Second, the nature of output activation patterns with respect to single input
activation will be studied. It can be shown that under certain conditions, the activations of output
units converge to an equilibrium point over time under competitive distribution of activation. Also,
the activation of an output unit is a monotonically increasing function of its relative connection
strength from the original input unit. In the third and fourth parts, the study focuses on how the
temporal correlations between input features can be transformed into spatial correlations of the
output feature maps during training. It is found that when two input units are in perfect temporal
correlation, their output feature maps are in perfect spatial correlation after training. On the other
hand, when two input units are in perfect anti-correlation, it may produce anti-correlated spatial
feature maps only under some restrictions.

7.1 The Abstract Model

The analysis in this chapter will be based on an abstract model, so that the analysis is more
mathematically tractable and the results are widely applicable. This abstract model has only two
layers of units: one layer of input units, and one layer of output units (Fig. 7.1). The input
units and output units are fully connected, unless otherwised specified. The input units have no
lateral connections. The output units may or may not have lateral connections, depending on the
situations discussed in later sections.
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Figure 7.1: The abstract model for mathematical analysis of cortical feature map relationships.
There are m units in the input layer, which are fully connected with the n units in the output
layer.

There are m input units and n output units. The activation level of input units are designated
as Iy, I, ...I,. The activation levels of output units are designated as aq,as,...a,. The connection
strength from input unit ¢ to output unit j is wj;, for ¢ = 1,2,...m and 7 = 1,2, ...n. The units
in the input layer receive initial activations: I = (11, I3, ...[,;). An input activation pattern is held
steady while activation spreads to the output units, using competitive distribution of activation as
designated in Equation 3.8 and 3.9. After the activation in output units stablizes, a competitive
learning rule (Equation 3.10 and 3.11) is used to update the weights wj; for ¢ = 1,2,...m and
7=1,2,..n.

In this model, each input unit is considered to be an input feature. A certain feature is present
if and only if the corresponding input unit is activated. Multiple features can be present simultane-
ously, as they were in most cases in the training input patterns for the motor control model. There
may be some temporal relationship between different input features in the training patterns. The
measurement of an output map with respect to a particular input feature is done by activating that
input unit and measuring the activation pattern in the output units. The analysis in this chapter
will focus on the relationship of the output maps for different input features. We will study how the
temporal correlations between input features are translated into spatial correlations in the output
feature maps.

7.2 Activation Patterns of Output Units

In this section, the analysis is focused on the activation patterns in the output units of the
abstract model described earlier, using competitive distribution of activation. Competitive distri-
bution of activation is a more dynamic activation rule than standard activation rules. There is no
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general theory about the convergence of activation in different models using competitive distribu-
tion of activation. In this analysis, it is assumed that initially all input and output units have zero
activation, and then an input pattern I is applied to the input layer and held steady. The acti-
vation spreads from input units to output units according to the rule of competitive distribution
of activation, and finally stablizes. The study that follows will focus on the convergence of the
activation patterns and the relationship between the final activation pattern in the output layer
and the input activation pattern. It will be shown that in certain simplified situations, activation
in the output layer converges to equilibrium; the resultant activation levels can be derived as a
closed form formula; and the final activation of a particular output unit is a monotonic function of
incoming connection strength. These results not only provide us with a better understanding about
the nature of the activation rule under competitive distribution of activation, but also provide the-
oretical background for directly using weights to measure cortical maps under certain conditions,
as described earlier in this dissertation. The results in this section are also used in the analysis in
later sections.

There are several past analyses of self-organized feature maps. Most of these are based on
Kohonen’s model. Since Kohonen’s model uses a simple rule to compute activation of output units,
the analyses are focused on the convergence of training, not the convergence of activation. In the
one dimensional case, it has been proved that the Kohonen’s algorithm converges [Kohonen, 1989;
Kohonen, 1995; Erwin et al., 1992; Lo et al., 1993]. For higher dimensions, the results are only
partial [Ritter & Schulten, 1986; Erwin et al., 1992].

There is also some previous work about the final activation patterns using competitive distribu-
tion of activation. [Benaim & Samuelides, 1990; Reggia & Edwards, 1990] used different versions
of activation rules that imposed no bounds on activation levels, and focused their analysis on the
conditions for getting stable activation levels. [Wang & Seidman, 1988] used an activation rule
that has an upper bound of 1.0 which can be an equilibrium point. That study was focused on
equilibrium of activation in several different models, based on different initial activation patterns.
In these analyses there were no external inputs. Also no activation of any unit was held steady.
The network relied on its own initial activation and activation rule to reach a stable position. The
activation rule used in the analysis in this section (as well as in our previous simulations with the
motor control model) is different from the above activation rules in that it has an upper bound
for the activation level, and this upper bound can never become an equilibrium point. Also some
portion of the network (namely input units) are held steady and corresponding activations in the
output layer are determined. In summary, past related analyses all used a different activation rule
that that used here.

Given a pattern I = ([y, I3, ...1,,) (assuming [; > 0) clamped on the inputs, a weight matrix
W = {wj;}, and initial activation values for output units, the activation levels of output units
a(t) = (a1(t), az(t), ...a,(t)) are uniquely determined at any given time, according to the competitive
distribution of activation rule. Since the measurement of a cortical map of any particular feature is
determined by stimulating single input layer units and measuring the corresponding activations in
the output layer, the analysis in this section is limited to the situation where only one input unit
is activated. That is: I = (I3, 1s,...1,,) where I; # 0 for a particular unit j and all other I; = 0 for
t # j. The problem can be further simplified by assuming the absence of lateral connections in the
output layer. The following analysis is based on this assumption.

Now consider output unit k. According to the activation rule and the assumption of having
only one input unit activated, we have:
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dak(t)
dt

= csa(t) + (M — ap(t))ing(t) (7.1)

where

_ () + gy
") + qwy

Here a(t) is the activation level of output unit k, and ing(?) is the activation received by unit k from
the input layer, which equals outy;(t), the activation from input unit j to output unit k, because
unit j is the only activated unit in the input layer. Parameter ¢s < 0 is the decay constant indicating
how fast activation decays, and M > 0 is the maximum value of activation. Parameter ¢, > 0 is
the output gain constant, determining the fraction of activation to be output. The parameter ¢ has
two effects: one is to prevent division by zero when initial activations in output units are zero; ¢
can also be used to control the degree of competition. Since in the simulations of the motor control
model demonstrated in previous chapters a very, very small ¢ was used most of the time and it did
not significantly contribute to the control of competitiveness, we will assume that ¢ values are zero
in this analysis and that there are very small, equal initial activations in the output units to avoid
division by zero. Hence Equation 7.2 becomes (omitting time ¢ for convenience):

an(t) = OUtk]‘(t) (7.2)

. pW;
g = cp—=———1I; 7.3
le alwlj J ( )
Substituting Equation 7.3 into Equation 7.1, we have:
day, LM ) apW; (7.4)
— = csay —ag)e,—=—""—1; .
dt pzl ajwr; I
Equation 7.4 is actually a set of differential equations, for £ = 1,2, ...,n, with initial small but

equal positive values for every a(0). Before we derive the activation levels at equilibrium, we must
first prove that this set of differential equations will reach equilibrium when time ¢ goes to infinity,
instead of oscillating forever, or some other behavior. To prove the convergence of Equation 7.4 is
a little complicated. Note that Equation 7.4 can be rewritten as:

day,

. = (es + (M — ap) I;)ay, (7.5)

o Pki
"
emphasizing that ap = 0 is a possible equilibrium point. To eliminate the effect when ay is close to
zero, we first examine an altered differential equation set:

day,

Wk;
— I .
7 (7.6)

L
P J
o1 @y

We will show that Fquation 7.5 converges to a set of values that satisfy:

:Cs‘l'(M_ak)

cp——1;=0 7.7

le ajwy; J ( )
for all £ =1,2,...n. Any solution of Equations 7.7 is an equilibrium point of Equations 7.6. What
we need to prove is the system will converge to this solution from the beginning point. Note that
Equations 7.6 will not converge on every beginning point. For example, if ax < 0forall £ = 1,2, ...n,
then Equations 7.6 simply diverge.

cs + (M — ay)
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In the following, we assume that the same conditions hold as held in the computational studies
described throughout this chapter. Specifically, we assume that the decay constant ¢; < 0, the
excitatory gain constant ¢, > 0, the maximum activation M > 0, and that external inputs are
I; > 0, i.e., excitatory. We also assume that initially, w;; > 0 and 0 < @;(0) < M for all 7 and j.
These conditions were always satisfied by the models described in this dissertation.

Lemma 7.1 If the above conditions are satisfied, then
(a) a;(t) < M for anyt >0

(b) >°iey apwy; > 0 for any t > 0

will hold on the trajectory governed by Equations 7.6.

Proof: Part (a) is apparent from Equations 7.6 with the assumption that a;(0) < M. For part
(b), it is apparent that Y ;_; ayw;; > 0 at t = 0 by the assumption in the text above. Activations
ar move on the trajectory decided by Equations 7.6. When ) ;_; ajw;; becomes sufficiently close
to zero, its reciprocal will become very big. As a result, the right hand side of Equations 7.6 will
become positive, necessarily causing aj to increase. Therefore ) ;_; a;w;; will increase and move
away from zero. O

To prove the convergence of Equations 7.6, we first prove a two-dimensional special case. Then
we generalize the result to the n-dimensional situation.

Proposition 7.1 The set of differential equations in Eq. 7.6 converge to a set of values that satisfy
FEquation 7.7 in a two dimensional space (i.e. n =2).

Proof: We need to prove the convergence of:

da w
{ dd—tl =cs+ (M- a1)cp7a1w1]fa2w2j I; (7.8)
a wo .
d_t2 = C’S —I— (M - a2)cpa1wlj-|—?12ng ]
Let:
wlj
Ll=c,+ (M —ay)c,———1I;
( ) pa1w1j + aswsy; !
ng
I2=c,+ (M —ay)c,—————1I;
( 2) Paywyj + agwq;
with some algebra, L1l = 0, L2 = 0 can be rewritten as:
wi(1+ A)ar + W2 = w;AM (7.9)
wy;a1 + w2](1 + A)a2 = UJQJAM )

Here A = _C—’C’jj is a positive constant. Calculate the slope of L1 =0, L2 = 0 in the space (a1, az):

Slope(L1=0) = —wuldt)
{SIOW(L _ ) _ wi) (7.10)
ope(L2=10) = ~ o (AFT)

Since wy;, we; and A are all positive, we know that both Slope(L1 = 0) and Slope(L2 = 0) are
negative. Also since A > 0, |Slope(L1 = 0)| > |Slope(L2 = 0)|. As a result, L1 = 0 is always
steeper than L2 = 0 (see Fig. 7.2). Also |Slope(L1 = 0)| > |Slope(L2 = 0)| implies that L1 and L2
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Figure 7.2: Drawing of L1 = 0 and L2 = 0 in the two dimensional space (aj,az). L1 = 0 and
L2 = 0 intersect at X. L1 = 0 and L2 = 0 divide the plane into four sections: I, II, IIT and TV.
Each section has a unique combination of the sign of L1 and L2, indicated as + and —. The small
arrows indicate the moving direction of either a; or a; in each section as well as on the boundaries.

are not parallel. So L1 and L2 have a unique intersection point. Draw L1 = 0, L2 = 0 in the plane
of (a1, az), it will be similar to Fig. 7.2. The intersection of L1 = 0 and L2 = 0, X, may not be in
the first quadrant. It may be in the second or fourth quadrant.

L1 = 0 and L2 = 0 divide the plane into four sections, named as I, II, IIT and IV. We only
consider the area where ajwy; 4+ aswy; is greater than zero, which includes entire first quadrant
and part of the second and fourth quadrant. Each of these four sections has a unique combination
of the sign of L1 and L2, indicated as + and — in Fig. 7.2. Since %1 = L1 and %2 = L2, the
signs of L1 and L2 also determine the direction that the system (aq,az) moves when governed by
Equation 7.8. The small arrows in Fig. 7.2 indicate the moving direction of either a; or ag in each
section as well as on the boundaries. It is not difficult to see that, when (ay,a3) is in any of the four
sections, the sign of %1 and %2 will make sure that it moves towards the intersection point X. For
example, in section II, L1 > 0 and L2 < 0, so ay is increased and ag is decreased, moving (ay, az)
towards X. Also on the lines L1 = 0 and L2 = 0, the movement directions are either horizontal
or vertical, as indicated by small arrows on the lines (see Fig. 7.2). As a result, (aq, az) will finally
converge to X no matter where it starts.

Note that the drawing of Fig. 7.2 depends on the slope of L1 = 0 and L2 = 0. It is important
to have L1 = 0 be steeper than L2 = 0. Otherwise the signs in Fig. 7.2 will be different and (a4, az)
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could move away from X, and the system would not converge. O
We have proved that Equation 7.8 will converge to the equilibrium point of X in two dimensional
space. Now we extend the result into n-dimensional space.

Proposition 7.2 The set of differential equations in Equation 7.6 converge to a set of values that
satisfy Fquation 7.7.

Proof: First, arbitrarily pick a dimension ¢. For a given point a = (ay,ag, ..., a,) in n-dimensional
space, define:

Wy
eI 7.11
le alwlj J ( )

We will show that a will move on the trajectory governed by Equation 7.6 towards the point where
Li;(a) = 0.

First, assume that L;(a) > 0. In this case, a; will increase over time. We will show that a’s
trajectory will decrease L; to zero. There are two situations: i) for all other k # ¢, dg—t’“ > 0; ii) for
some k, d;—tk < 0.

Case 1: For all other k # 1, dg—t’“ > 0. That means every component of a = (a1, ag, ..., a,) is
increasing. Then by Equation 7.11, L;(a) is decreasing over time. This trend continues until either
L;(a) = 0 or one of a; no longer increases. The latter occurrence reduces the situation to the next

Li(a)=cs+ (M — a;)

case.
Case 2: For some k, Ly = dg—f < 0. Fix the values of a; for [ # i,k. We study the subspace
defined by a; and ay, (see Fig. 7.3). L; = 0 and Ly = 0 can be rewritten as:

wij(l + A)(Zi + wkjak = wijAM — Zl;ﬁi,k alwlj (7 12)
Wija; + wpi(l+ Aar = wp AM =312, 5 anw; '
The slopes of L; = 0 and L, = 0 are:
L — Wy (A+1)
Slope(L; =0) = e (713)

We have |Slope(L; = 0)| > |Slope( Ly = 0)|. Draw the projection of hyperplane of L; = 0 and
Ly = 0in subspace (a;, ax) as indicated in Fig. 7.3. Since L; > 0 and Ly < 0, the projection of a in
(a;,a) subspace should be in section II. In this section, the increase of a; tends to move a closer
to L; = 0, but a; decreases to move a downward. Whether a will move closer to L; = 0 is decided
by relative value of I; and L. However, as indicated in Fig. 7.3, the boundary between section II
and I has only positive L; and L is zero. As a result, a can only be pushed towards the corner X,
and therefore moves towards L; = 0. It should be noted that a not only moves in (a;, a;) subspace,
but also moves in other dimension at the same time. Fig. 7.3 is true in (a;, ay) subspace for any a;
(I #4,k). That is, in every (a;, ax) subspace, a is going to be pushed into a corner similar to X.
Moreover, for other dimensions [ # i, k, there is a similar cross plane drawing. Fither L; > 0 and
a move towards L; = 0, or L; < 0 and a is pushed into the corner of section II. As a result, a will
moves to L; = 0 no matter which dimension it moves.

The argument of L; < 0is very similar to the above and a will move towards L; = 0. Since ¢ is an
arbitrary dimension, a will eventually moves to the intersection where L; = 0 for all ¢ = 1,2, ..., n.
O
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Figure 7.3: Drawing of L; = 0 and Ly = 0 in subspace (a;,a;) of the n-dimensional space. The
projection of hyperplane L; = 0 and Ly = 0 in (a;, ax) subspace intersect at X. L; =0 and Ly =0
divide the subspace into four sections: I, II, III and IV. Each section has a unique combination of
the sign of L; and Ly, indicated as + and —. The small arrows indicate the moving direction of
either a; or a; in each section as well as on the boundaries.

So far we have proved the convergence of differential set in Eq. 7.5. Now we come back to prove
the original differential equation set in Eq 7.4.

Proposition 7.3 The set of differential equations in Fq. 7.4 converge to an equilibrium point.

Proof: Consider the intersection point X of hyper planes L; = 0 for¢ = 1,2, ...,n. X has coordinates
x = (21,23, ...,¥,) that satisfies Equations 7.7. There are two different situations:
Case 1: X is in the first quadrant. That means z; > 0 for all £ = 1,2, ..., n.

Comparing Equations 7.5 with Equations 7.6, it is apparent that the only difference is that
Equations 7.5 has one more factor: a; on the right hand side of the equation. Since initially every
ay has a small positive value, adding such a factor will not change the sign on the right hand side
of the equation. So the sign Equation 7.5 will be always the same as that of Equation 7.6 for
all £ = 1,2,...,n. Based on Proposition 7.2, the point a = (ay,az, ..., a,) will move towards the
intersection point X. Since X is in the first quadrant, the sign of ay is never going to change during
the movement towards X. Finally, the point a will reach the equilibrium point X, where all dg—f
become zero.

Case 2: X is not in the first quadrant. That means there are some z; < 0.
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Again, with initial small positive values for all ay, the point a is in the first quadrant and will
move towards intersection point X, just like the previous case. However, since X is not in the
first quadrant, a will moves across the quadrant boundary at some point. When this happens, the
factor ap in Equation 7.5 will take into effect. For example, suppose for a particular m, z,, < 0,
and point a has move to a place where a,, become zero. In this case, the equation:

da,,

= (est (M = ay,) — [ )a, (7.14)

C
P J
> awi;

d“m be zero and preventing a,, from becoming neg-

will be dominated by the factor a,,, making
ative. As a result, Equation 7.14 has reached 1ts equilibrium point and a,, will no longer change.
From the neural network point of view, unit m has zero activation and therefore has quit the com-
petition from the competitive distribution of activation. From a spatial geometry point of view,
the system degenerates from n-dimension to (n-1)-dimension. The point will continue to move in
the hyperplane of a,, = 0, and all the hyperplanes Lj also project into this hyperplane, forming
an (n-1)-dimensional system. This degenerate process will continue until all dimensions that have
a negative xy have ap = 0. In the remaining subspace, the intersection point X will be in the first
quadrant and the subsystem will converge to that point. O

Now that we have proved the convergence of the Equations 7.4. It is not too difficult to find
out the stablizing values of this equation set.

Proposition 7.4 The stablizing values of the differential equations in Fq. 7.4 are:
21 Wi
(A + n)wg;

for k = 1,2,...,n, provided that this set of values correspond to the point in the first quadrant of
the n-dimensional space.

ap = M(1 - ) (7.15)

Proof: We already know that Equations 7.4 will converge. When the system reaches the equilibrium
point, we have:

AW,

csay + (M — cp=——1;=0 7.16
o+ (O = e, (7.16)

Here, we can safely assume that a; # 0. So dividing Eq. 7.16 by aj, we have:
cs + M—akcil_o 717
R T (7.17)

Rearranging Eq. 7.17, we have:
(A + 1)wkjak + Z ajwy; = MAwk]‘ (7.18)
12k

Here A = f—in. Eq. 7.18 holds for every £ = 1,2, ...n. So this is basically a set of linear equations:

(A+ Dwyja; + Wy a2 + ... 4+ Wy, = MAuwy;
wl?‘al + (A+ Dwgjas + ... + Wy, = MAwy; (7.19)
wyjaq + Wy a2 + .+ (A+Dwyja, = MAw,;
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Solving this equation set, we have:

21 Wi
ar = M(1 g n)wk]) (7.20)
fork=1,2,..n. 0O
This result indicates that the activation level in output unit & with respect to stimulation at a
particular input unit j is a monotonically increasing function of the “relative connection strength”
between unit j and k. Here “relative connection strength” between unit j and k is the ratio of
connection strength between unit j and k to the summation of the connection strengths between
unit j to all the output units. The larger proportion wy; has among wy; (for [ = 1,2,...n), the
higher the activation a; will be. Also the parameter A = (¢, *1;)/(—c;s) will affect activation level,
the more output gain (¢,) or less decay (c;), the higher a; would be.
Equations 7.15 are only valid when the intersection point is in the first quadrant. In case that

for some k, ar, = M(1 — (AZ-E%) < 0, the system will degenerate, according to Proposition 7.3.
J
In such case wy; is too weak to keep any positive aj. As a result, aj remains zero and quit the

competition. In this situation, we have following proposition.

Proposition 7.5 Without loss of generality, assume that weights are sorted so that wy; > wy; >

o > wyj. Also assume that h is the largest number in 1,2, ...,n such that equations
ot (M = ap)ey—t [ =0 (7.21)
=1 LW
fork =1,2,...,h have an intersection in the first quadrant. The equilibrium values of the differential
equations in Fq. 7.4 are
21 Wi
ap = M(1l - ———— 7.22
o= (1= =) (7.22)

fork=1,2,... 0h,anday =0 fork=h+1,...,n.

Proof: Equations 7.20 tell us that the unit with the smallest weight has the smallest activation.
With wy; already sorted in descending order, and all the initial a; (for £ = 1,2,...n) are the same

small positive number, it is apparent that (¢, + (M — an)cpﬁlj)an is the smallest (the most
(=1 4%y
negative) among 1,2,...,n. As a result, a, is the first activation level to approach zero. Variable

a, then remains at zero, reducing the system to (n-1)-dimensions. This process continues until we
find a largest number h such that Equations 7.21 have all positive solutions. At this point, the
system no longer degenerates. By following the same derivation procedure, we have:

21 Wi

ar = M(1 (it h)wk]‘) (7.23)

fork=1,2,...,h. O
Here a simple example is described to illustrate the numerical results of above analyses. Assume
there is one input node and three output nodes in the model. The connection strengths are
wy = 0.3, wy = 0.2, w3 = 0.1, respectively. Also assume the input node has activation of 1.0 and is
held steady. The decaying constant ¢, is —1.0; the output gain constant ¢, is 1.0. We first calculate
the intersection point of L1 = 0,1y = 0, and L3 = 0. By using Equation 7.15, the intersection
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point can be calculate as @y = 0.5,a9 = 0.25,a3 = —0.5. It turns out that this point is not in the
first quadrant of (a1, ag,as) space . It is negative in az dimension. In real simulation, a1, ay and
as have initial positive values, and a = (ay, az,a3) will move toward the intersection point. When
as teaches zero, it no longer change, according to Equation 7.5. The system degenerates into a
two dimensional system. The intersection of Ly = 0, Ly = 0 is a; = 0.444, a3 = 0.167. This point
is in the first quadrant of (aq,az) space. So the system converge to this point. As a result, the
final activation of the output nodes in equilibrium point is: a; = 0.444, a3 = 0.167,a3 = 0. The
numerical calculation with difference equations of this sample model yields the same result.

So far, we have obtained the result about activation levels of output units at equilibrium, with
respect to single input stimuli. This result can be used in further analysis of the formation of
cortical feature maps, since the measurement of cortical feature maps is conducted by stimulating
only one input unit at a time, and measuring the corresponding activation pattern in the output
units. Some of the analysis later in this chapter will use this result.

The result obtained here also helps us to have a better understanding of the relationship between
the output activation patterns and the corresponding connection strengths. With a single activated
input unit, some output units with weak connections from this stimulated input unit will have
zero activation, while other output units compete for activation based on their relative connection
strength with this input unit. From Equation 7.22, it is apparent that the activation level of
an output unit is a monotonically increasing function of the relative connection strength of this
unit. This observation provides theoretical background for using weight vectors directly as the
measurement of a cortical feature map. Note that in previous chapters, when motor output maps
of MI were measured, instead of stimulating MI units and measuring the activation patterns in
lower motor units, the weight vectors were used directly as a substitute for such activation patterns.
From the results obtained in this section, it is clear that the order of the magnitude will be the
same regardless of using weight vectors or activation patterns. Therefore, such a simplification of
map measurements would not affect the appearance of the resultant maps, as long as appropriate
thresholds were selected.

It should be noted that above simplified measurement method was only used in measuring the
output map from MI to lower motor neurons, where no lateral connections exist between units in
the output layer. It will not apply to other map measurement situations such as cortical input
maps, where output units (or more precisely, measured units) were laterally connected. In the
latter situation, the network dynamics become more complicated and the activation of a particular
output unit not only depends on its connection strength from input units, but also depends on the
activation of adjacent units in the same layer.

7.3 The Relationship of Cortical Maps with Perfectly Correlated
Features

In this section and the next section, the analysis will be focused on the relationship between
different feature in cortical feature maps. The simulation results presented in the motor control
models in previous chapters have indicated that the formed cortical feature maps have features
that exhibit certain kind of relationship between each other. In general, it was found that via
training, temporally correlated input features usually form spatially correlated feature maps in the
same cortical layer. Such kind of correlation is subject to a theoretical investigation.
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Because of the complexity and dynamics of this model, a comprehensive theoretical analysis
would be extremely difficult, if possible. For simplicity, two special cases are studied. One case is
to study the relationships between cortical feature maps with two input features that are in perfect
correlation (correlation coefficient 1.0). The other case is to study the relationships between cortical
feature maps with two input features that are in prefect anti-correlation (correlation coefficient -1.0).
These are two extreme cases; all other cases falls somewhere in between. The relationships between
the length proprioceptive input maps and the tension proprioceptive input maps in both PI and
MI described in previous chapters usually reflect these two special cases. While the relationships
between visual input maps and proprioceptive input maps sometimes reflect intermediate situations.
The relationships between sensory input maps and motor output maps in the original motor control
model can be regarded as a special form of relationships between input maps, as the output signals
are fed back as sensory signals through the closed-loop system. Therefore the analysis results of
the two extreme cases in the simplified model can give us significant insight into the correlations
of cortical feature maps in general.

In this section, the analysis is focused on the case where two input features are in perfect
correlation. Suppose input units ¢ and j are in perfect correlation. That is: I; = I; for any input
pattern I'. There is no restriction or assumption about the values of other input units. We study
the correlation of features ¢ and j. We will show that perfect temporal correlation in input features
can produce perfect spatial correlated feature maps in output layer.

Proposition 7.6 Suppose that for every input pattern I, I; = I;, for an arbitrary but particular i
and j. Also suppose that during training, each output unit has an unlimited number of chances of
being activated. Then after training, the cortical feature maps of i and j become identical (or fully
aligned).

Proof: Consider the weight changes from unit 7 and j to a particular output unit £ during the
training process. According to the competitive learning rule, we have:

wie” = wii + i — wiia (7.24)
wis® = wii + yll; — wiag (7.25)
old old new new

where 7 is the learning rate constant. The quantities wpi®, wi'® and wif", wp7" are weights from

unit ¢, j to unit & before and after a learning cycle, respectively. aj is the thresholded activation

defined as:
(7.26)

N {ak—a ifap > a
ak:

0 otherwise

where « is a threshold constant. We want to show that during training, the wy; and wy; get closer
and closer in value, and finally becomes equal. To calculate the difference between wy; and wy;,
subtract Equation 7.25 from Equation 7.24:

Wi = = il gl 1~ (= o (7.27)
Since I; = I;, we have:

! Actually, when the correlation coefficient between I; and I; is 1.0, it only mean a perfect linear dependency
between I; and I;. In case that both I; and I; are in range [0, 1], and assuming I; and I; have same expectation (i.e.
both have same chance to get activated), we can safely say that I; = I;.
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new

Wi = wiif] = 1 = nagl|wiy — wif (7.28)

Here using absolute values insures that wy; and wy; will get closer regardless of which one is bigger.
In order to have [wpf" — wps| < lwghd — wZéd we must have |1 — naj| < 1. We know that 7 is a
positive constant usually much smaller than 1. a} is a non-negative number smaller than maximum
activation constant M. So a sufficient small learning rate 5 will ensure that 1 —naj > 0, and hence
|1 — naj| < 1. In case that af = 0, we have |wif" — wpcv old _ zéd|. We have assumed
that during training, there are an infinite number of chances for a} to be greater than zero?, then
Jwps — wps| < lwgld — wZéd| holds, and after sufficient training patterns, we have |wf" — wzew|
close to 0. This is true for every output unit k. As a result, we end up having identical Welght
vectors wg = (wyg, Wai, ..., Wy;) and Wy = (w1, wa;, ..., wp;). Since the cortical feature maps of
features ¢+ and 7 only depend on the incoming weight vector from input unit 7 and j, respectively,
identical weight vectors will lead to identical (or fully aligned) cortical feature maps. O

In the above, it has been shown that the temporally correlated input features will make their
corresponding weight vectors close to each other, and therefore lead to spatially fully aligned cortical
feature maps. However, in an actual simulation of the motor control model, the modification of
weights is a little bit more complicated. Not only the competitive learning rule is applied, but
also a normalization procedure is applied after each learning cycle, to avoid weight vectors growing
without limit. We ignored this issue above. The following proposition will take this normalization

procedure into account.

Proposition 7.7 Perfectly correlated input in input units i and j will lead to fully aligned cortical
feature maps of 1 and j even when a normalization process is used during learning, provided that
each output unit has an unlimited number of chances to be activated.

Proof: For any output unit &, the sum of all of the components of the incoming weight vector is
kept constant all the time during the training process. That is:

dwy =8 (7.29)
l

where S is a given constant. After the competitive learning rule is applied to the weights, a

renormalization procedure occurs to insure Equation 7.29 still holds. Assume that w%d is the

weight from unit [ to unit k£ at the beginning of a given learning cycle, wj/* is the weight after

competitive learning rule is applied, and w”ew is the weight after renormalization. We have:

wif? = wi® + nll — wia; (7.30)
and
new' S new
Wiy = Z wiew Wiy

?More precisely, we should say there are infinite number of chances such that M > a} > ¢ > 0, where ¢ is any
given small positive constant.
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wit + n(l — wit)ay
Yl + (1, — wild)ar]
wit + n(l — wit)ay

(S + 0 Im = 5)az]

Therefore
wOl.d + (I _ wold)a* wold + 77(] _ wold)a*
wzgw’ . wzgw" _ ki LIS ki )% o kj J kj J7k
' ! S+ 0 I — S)az] [5+ 0, L — 5)aj]
_ S(1 = nap) ‘wzld _ wzld‘
(S + (32, I — S)az]| 1™ !
1 —nay, old old
= T | e ]
1+ —nay — nag,

after rearranging the formula, we have:

new’ new' | _ 1 old old
Wiy — Wy S ‘wkz — Wiy ‘ (7.31)
1 _I_ %y m
1-na} S
. o . nay Z Im .
From Equation 7.31, it is clear that Topa¥ g must be greater than zero in order for
k
new new old old
lwid — wif | < Jwi® — wi (7.32)

to hold. Here S is a positive constant. And }_, I, is presumably greater than zero. 1 — naj is
also greater than zero when 7 is small and a} is in normal range. So Equation 7.32 will hold if and
only if naj is greater than zero. O

Thus, a similar conclusion could be reached as the case without weight normalization: when each
output unit has an infinite number of chances to be activated above threshold during the training
process, and sufficient training patterns are provided, perfect temporal correlation of input features
will lead to fully aligned cortical feature maps. It should be pointed out that the results obtained
from the analysis above are based on relatively few restrictions. The above analysis does not rely on
specific activation rule, as long as that activation rule can produce positive activation with certain
upper bound. Therefore the result of analysis should apply in systems with different activation
rules. In fact, this widely applicable result is due to the nature of the competitive learning rule.
The competitive learning rule modifies the weights in a way such that activated output units have
their incoming weight vectors shift towards the input vector, in the m dimensional input space.
After training the incoming weight vector of a particular output unit points to the average position
of the set of input vectors that cause it to activate. This property of the competitive learning rule
not only holds in the entire input space, but also holds in any of its subspaces. That is, in any
subspace, the incoming weight vector (in that subspace) of a unit will still shift towards the input
pattern (in that subspace). Hence we can hand pick dimension 7 and j to form a two dimensional
subspace. In this subspace, a particular output unit will have its input weight vector pointing to
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w(i, J)

O i

Figure 7.4: A subspace (in dimension ¢ and j) of the m dimensional input space. The crosses in the
figure shows the positions of input patterns in this subspace that can activate a particular output
unit. Since all these input patterns have their ¢/th and j’th components equal, the final incoming
weight vector w(¢, ), which points to the average position of those input patterns, will also lie
along the diagonal line.

the average position of the input vectors that activated it during training. This average position
will lie on the diagonal line of the two dimensional subspace, as indicated in Fig. 7.4, because all
of the input patterns (and hence all the input patterns that could activate this output unit) have
their ¢/th and j'th components equal. Note that different output units may have different lengths of
incoming weight vectors in this subspace. Some may be long enough to meet the threshold during
map measurement, others may not. Yet they all lie on the diagonal line. Therefore, after every
output unit has been activated a sufficient number of times, the output maps with respect to input
features ¢ and j will become fully aligned to each other.

7.4 The Relationship of Cortical Maps with Perfectly Anti-correlated
Features
In the previous section, it has been shown that perfectly correlated input features will generate
identical output maps after training. In this section, we look at the other extreme case: two input

features that are in perfect anti-correlation. That is: the correlation coefficient between two inputs
values at unit 7 and j is —1. In a simple case, the input unit ¢ and j has one and only one activated
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in each training pattern, namely < a;,a; >€ {< 1,0 >,< 0,1 >}. Based on simulation results
reported in previous chapters, one would anticipate a theoretical conclusion that anti-correlated
input features will produce corresponding feature maps that are mutually exclusive. That is: there
is no output unit tuned to both features. This turns out not to be true. In order for an output
unit k to be tuned to either stimulation in input unit ¢ or j, but not both, it is necessary to have
wy; and wy; to segregate during training. However, depending on the parameter setting and initial
weights, it is possible that wy; and wy; do not segregate during training, but converge to become
the same value. As a result, unit k£ can become tuned to both unit ¢ and j. When all of the output
units have equal weights from unit ¢ and j, the maps for feature ¢ and j become identical, instead
of mutually exclusive. In this section, we will focus our analysis on the condition under which
the output units segregate their incoming weights from unit ¢ and j, hence producing mutually
exclusive feature maps.

In a simple case, we study a network with no input units other than units ¢ and j (or we can
assume other input units exist but always have input values of zero) in order to avoid interference
from other input units. The network uses competitive distribution of activation along with a
competitive learning rule, and is repetitively presented with input patterns of < 1,0 > or < 0,1 >
during the training. In this case, we have the following proposition:

Proposition 7.8 A sufficient condition for the network to produce mutually exclusive feature maps
after training is that the parameter setting satisfies:

A=-"T <y (7.33)

_CS

where n is the number of output units, c, is the output gain, and c, is decay constant.

Proof: First consider the changes of the weights during the training. We start with the cost function
(or Lyapunov function) associated with the competitive learning rule. The cost function has the
form:

Flwg} = % S” (1 — wy)? (7.34)

where a}” is the thresholded activation as indicated by Equation 7.26, and p is an input pattern.
Here pp € {< 1,0 >,< 0,1 >}.
The gradient of the cost function is given by:

IE
Owg

nY_al™ (I — wy) (7.35)

I

-7
Since p € {< 1,0 >,< 0,1 >}, Equation 7.35 becomes:

or <1,0>x*
— — a ’
n@wki %
The gradient of the cost function points to the direction in the weight space that would minimize
the cost function. So, we define:

(1 —wg;) + Ua;jo’b*(o — W) (7.36)

Awy; = nag 7 (1 = wg) + nag (0 — wyy) (7.37)
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The following analysis will use this equation instead of the conventional individual update rule,
because Equation 7.37 reflects the real direction that the weights shift towards. This equation
also corresponds to so-called batch mode competitive learning rule([Hertz et al., 1993]), in which
case each of the input patterns is presented to the network and the changes of the weights are
accumulated and then updated altogether.

Similar to Equation 7.37, for wy;, we have:

Awy; = nag 70 — wiy) + a1 - wgy) (7.38)

Also it is assumed that initially wy; and wy; are not equal, otherwise this batch mode learning will
always yield the same value of wy; and wy;, after each iteration of learning®. With this assumption,
it is also safe to assume that wy; > wy; for the purpose of simplifying formulas in the following
analysis (assuming otherwise will not affect analysis results). We need to study the condition under
which after each iteration of learning, wy; and wy; will segregate further. With all the weights to
be positive and wy; > wy;, we want to have:

Wi — Wit > wid — wilt (7.39)
So from Equation 7.39, we have
A A R new old new old
Wi wi; = (wp —wi®) — (i — wi’)
= (wpf” —wp) = (0 = wiyh)
> 0 (7.40)

It should also be noted that wy; + wy; = 1 will hold during the training process if this incoming
weight vector was initialized to be 1 and each input pattern also has same length. Therefore

Awg; — Awy; = na,jl 0>*(1 — wy;) + na,jo 1>*(0 — W)
= mag 70 — wiy) + nag (1 = wyy)
= 2p(wpzap 7T = wria ) (7.41)

Here we are going to use the analysis results in Proposition 7.4. Assuming all the output units are
nonzero, we have

<1,0>% > Wi
' = M(1- 42
U ( (A+ n)w;m) (7.42)
SO _ D1 Wi
= M(1- 7.43
U ( (A+ n)wk]) ( )
WhereA—— I<10> I<01>_1

Plug Equatlon 7.42 and 7 43 into Equation 7.41, we have

Whi Wi Wi Zzwu)

Awyi — Awy; = 2M
Wk ki 77[( W (A + n) WE; (A + n)

— (Wi — wg;)] (7.44)

? Actually, an individual update rule can break this equality. So it is safe to assume wg; # ws;; otherwise simply
apply individual update rule once before using batch mode learning.
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Note that Y wy 4+ >y wi; = >o(wi + wy;) = n. When weights are initially random and n is
relatively large, >, wy; and Y_; wy; have similar values. Hence 3, wy; & 3" wi; = n/2. As a result,
Equation 7.44 becomes

7 7

(; - ;)7 — (wp; — wg;) >0 (7.46)

Equation 7.46 will ensure that after one iteration of {< 1,0 >, < 0,1 >} learning, wy; and wy; will
segregate further. However, it will not guarantee that in the next iteration of learning, wy; and wy;
will also segregate even further. To ensure that, we need

(; - —)7 — (wg; — wg;) (7.47)

to be monotonically increasing with respect to wg;, so that when wy; becomes larger (namely
segregates further away from wy;) in one iteration, it will become even larger in the next iteration
of learning. To simplify representation, let’s define wy; = z, so wy; = 1 — 2. Then Equation 7.47
becomes a function

x 1-2 n
_ _ —(x—(1- 7.48
R I oy Lo SCRR TR} (7.18)
where z € (0.5,1]. For f(z) to be monotonically increasing, f’(2) > 0 must hold. So
1 1 n
() — ) _ 9 A
o=t @aare 270 (7.49)
which is equivalent to
1 1 4(A+n)
(1—x)? T n (7.50)
Since
I T I S (7.51)
(1—-2)2 227 052 052 '
for z € (0.5, 1]. So we let
4(A
g dAA+n) (7.52)
n
After simplification, we have
A<n (7.53)

This equation will guarantee that f(z) will be monotonically increasing. Also it is not difficult
to prove that when Equation 7.53 holds, FEquation 7.46 will also hold. Therefore, whenever there
is a slight difference between the initial wy; and wy;, and unit £ can be activated, the difference
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will be come bigger and bigger during training. Eventually the unit will tune to only one of the
{< 1,0 >,< 0,1 >} patterns. When all the output units can be activated, the cortical maps with
respect to input feature ¢ and j will be mutually exclusive. O

Plug A = _C—fc’ into Equation 7.53, we have

Cp

<n (7.54)

—c,
This equation illustrates the conditions that the parameters of the network must satisfy in order to
produce mutually exclusive feature maps: (1) use smaller output gain ¢,; (2) use bigger magnitude
of decaying constant |c|; or (3) use more output units. These conditions give us some insight into
network behavior besides empirical experiments.

There are several considerations here. First, it should be noted that n here actually represent the
number of units that can be activated. Depending on the weight setting, some output units get such
weak input activation that they may never get activated and therefore have zero activation. The
larger n is in the above condition (3), the more output units that have sufficiently strong connections
so that they can participate in the competition. Second, the above derivation of condition assumes
that a certain output unit k& is activated for both < 1,0 > and < 0,1 > patterns. This is true
only when both wy; and wy; are relatively strong, namely close to 0.5. On the other hand, we are
actually only concerned about this situation. That is, whether a pair of initially close connections
to the same output unit (wy; and wy;) will segregate through training and eventually becomes
tuned to only one of the input patterns. For units that have an initial segregated connections from
inputs ¢ and j (i.e., one of them is close to 1, the other is close to 0), the above analysis is not
valid as in each iteration of {< 1,0 >,< 0,1 >} learning, the units are not activated all the time.
However, this is also less of a concern, because these units have already formed mutually exclusive
maps. Third, from the derivation process, it is clear that Equation 7.54 is a sufficient condition,
not a necessary condition. It is possible that, when Equation 7.54 does not hold, the weights still
segregate through training. This is most related to the initial values of wy; and wy;. Equation 7.54
only ensures that any wy; and wy; will segregate through training, unless they are both exactly 0.5.
Fourth, the above analysis uses gradient descent rule that similar to the learning in a batch mode
fashion, where each one of the two input patterns is presented to the network alternatively. In
fact, the analysis results also apply to the usual incremental learning rule, where input patterns are
presented to the network in random order, as long as the input patterns have an equal probability
of being used. In such a case the gradient descent will actually point to the same direction. One
advantage of using incremental learning rule is that it can force segregation of weights even when
they are initially all 0.5. Fifth, Equation 7.53 indicates that for a given network, the combination
of _C—fc’ is a single indicator of convergence. Individual values of ¢, and ¢, are not important, as long
as this ratio is kept within certain range.

Fig. 7.5 shows a very simple network as an example to illustrate the conditions discussed above
that will ensure the segregation of incoming weights. In this example, the number of output units
n = 2. According to Equation 7.53, A < 2 will ensure the segregation of weights. If we use

Equation 7.46 and plug in the corresponding weight values, we have A < % ~ 2.17. To make
sure that function f(z) in Equation 7.48 is monotonically increasing, where 2 = wy; = 0.6 here,
we have: A < % ~ 2.51. So, combining the two conditions, we get a more precise condition:

A= _C—IC’ < 2.17. This condition is slightly less restrictive than Equation 7.53, but it depends on
this particular set of weights.
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Figure 7.5: An example of a small network with only two input units and two output units. The
numbers on the connections indicate the weights. When presenting alternate input patterns of (1,0)
and (0,1) to the network, the two output units may tune to different input patterns, depending on
the parameter setting.

It should also be noted that the analysis results obtained in this section are based on a variety
of assumptions. First, the competitive distribution of activation is used as the activation rule, since
this is used in our motor control system. Other activation rules may yield different results. And
these results can be derived starting from Fquation 7.41 and plugging in corresponding activation
rule. Second, it is assumed that there are no lateral connections in output layer. When lateral
connections do exist, the activation landscape will be different. Third, it is assumed that during
derivation, all input units other than ¢ and j are never activated, in order to avoid the interference
from other input units. All these limitations indicate that the results obtained here are only
applicable to a model that is already significantly simplified. However, simulations show that even
our complicated motor control model is regulated by these analytical results to some degree. For
example, it was found in our simulations that increasing the magnitude of —¢, (while fixing ¢,
value) does effectively prevent the incoming weights of certain units from becoming equal during
the training process.

In summary, the analysis results in this section, although having significant constraints on their
applicability, give us some insight into the dynamics of our motor control model. These results
provide a theoretical understanding about some of our empirical findings during simulations, and
will give guidance help in building new network models in the future.
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Chapter 8

Conclusion

8.1 Summary and Contributions

The research described in this dissertation developed a multi-layered, “closed-loop” motor con-
trol system with both sensory input and motor output. Most previous neural network motor control
systems have used a single layer network that serves as both sensory input and motor output. These
past models mostly used visual information only as sensory input, and did not examine map forma-
tion. The motor control model described in this dissertation is the first motor control model that
incorporates proprioceptive sensory input, and it simulates map formation in primary propriocep-
tive cortex (roughly Brodmann area 3a and some surrounding cortex [Wise & Tanji, 1981]) using
unsupervised learning method. This approach makes the model more biological realistic. Since
visual input is an important sensory input, it was also implemented in the model. Simulations
were conducted on models with either proprioceptive or visual input, as well as on models with
combined proprioceptive and visual inputs.

The motor control model with only proprioceptive input was trained for the study of cor-
tical feature map formation. It was found that, based on random initial stimulation in motor
cortex, the network could self-organize to form cortical feature maps in both proprioceptive cor-
tex and motor cortex. These maps forms clusters for specific features. The output maps found
in primary motor cortex have characteristics that resembles those found in biological experiments
[Donoghue et al., 1992]. For example, elements that control the same muscle are widely distributed
in motor cortex; many cortical motor neurons can activate multiple muscles. Moreover, the coexis-
tence of multiple feature maps in the same cortical layer provided interesting relationships between
each other. These maps formed meanful alignment (or overlapping) after training, reflecting the
mechanical constraints of the model arm. It was found that the length input map of a particular
muscle was aligned with the tension input maps of its antagonist muscle. This occurred in both
proprioceptive and motor cortex. Also in motor cortex, it was found that the motor output map
of a particular muscle was aligned with the length input maps of its antagonist muscle and the
tension map of its own. The study of these cortical feature map alignment provided us with better
understanding of how sensory information was processed in the sensory and motor cortex and how
this information came to influence the motor output. The work will be helpful in building future
motor control models that incorporate more biological ingredients. This model has also become a
substrate for lesion study in motor cortex [Goodall et al., 1997], as illustrated in Appendix B.

We also examined the simulation of a version of the model which uses visual information instead
of proprioceptive information as sensory input. Since the visual information is received by MI
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via associative cortical areas in biological systems, and the actual encoding of visual information
received by MI is unknown, three dimensional coordinates (with coarse coding in each dimension)
of hand position was used as an abstraction of the visual information that reaches MI. Simulation
results indicated that after training, visual input maps have formed in primary motor cortex.
These maps also reflected the characteristics of arm mechanisms and formed meaningful input
output relationships. Unlike the proprioceptive input maps, which are usually fully aligned with
a particular motor output map, visual input maps are sometimes partially aligned with a motor
output map. Moreover, each visual input map may be partially aligned with multiple motor output
maps, and vice versa. A quantitative method was applied to measure how strongly these maps are
aligned, or spatially correlated. It was found that the strength of such spatial correlation between
certain pairs of input and output maps is related to the temporal correlation of both features during
the training process.

After studying the motor control model with either proprioceptive and visual input alone,
simulations were done with a version of the model with combined proprioceptive and visual inputs.
The focus of this study was on how these two different sensory inputs interact in the cortical
layer, and how their cortical feature maps influence each other. We wanted to know whether those
characteristics of feature maps observed in separate models are still preserved in this combined
model. It was found that the nature of proprioceptive input maps and their interrelationships are
mostly unaffected, compared with the proprioception-only model. This indicates that adding visual
input to the model does not influence the proprioceptive input maps significantly. However, the
proprioceptive input did influence visual maps in some sense. Although the appearance of visual
input maps remains similar with or without proprioceptive input, their relationship with motor
output maps did change. Mostly, with the presence of proprioceptive input, a visual sensory input
map could no longer be strongly correlated with the output maps of a pair of antagonist muscles at
the same time. This indicates that adding proprioceptive inputs changed the relationships between
visual input maps and the motor output maps, so that antagonist muscles are differentiated in
visual input maps. In the meantime the coexisting of both proprioceptive input maps and visual
input maps also formed consistent relationships that support the temporal correlation hypothesis
described earlier.

Limited theoretical analysis on cortical map formation was also done. Due to the complicated
structure and dynamics of the original motor control model, the analysis was necessarily based on a
simplified model, with only one input layer and one output layer. First, the activation pattern of the
output layer was analyzed based on single-input stimulation, in order to study the shape of feature
maps when a specific input feature was present. Under the condition of absent lateral connections,
the convergence of the activation pattern in the output layer could be proved under a competitive
distribution of activation mechanism. The corresponding activation levels could be calculated.
Subsequently, an analysis was done on why correlated (aligned) feature maps are usually related to
the temporal correlation in input features during training. It was proved that perfectly correlated
input features could produce fully aligned feature maps, with very few constraints. On the other
hand, when two input features are in perfect anti-correlation, then there is no guarantee that the
corresponding feature maps will be mutually exclusive. The correlation of the resulting feature
maps depends on the parameter settings and weight conditions in this latter case. A sufficient
condition of forming mutually exclusive feature maps was derived.

In summary, the research described in this dissertation has developed a biologically plausible
neural network motor control system. The system self-organized via training to form multiple input
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and output cortical feature maps. These maps exhibited some properties that are consistent with
experimental finds in biological systems, such as distributed feature representation, controlling
of multiple muscles for individual MI neurons, etc. The relationships between cortical feature
maps reflect the temporal correlation hypothesis: temporally correlated features usually cause their
corresponding cortical map representations to be spatially correlated. This hypothesis is strongly
supported by simulation results in different versions of the motor control model. It is also supported
by theoretical investigation on a simplified model, and provides testable predictions that can guide
future experimental research.

8.2 Limitations and Future Work

The motor control model described in this dissertation provides useful information about the
organization of cortical feature maps. This model, however, has its limitations. As a motor control
model, it is a great simplification from biological motor control systems. This model tried to
simulate sensory and motor cortices in a realistic fashion, but the lack of detailed biological data in
cerebral cortex and the possible computational cost have both imposed limitations on this effort.
The simulation of the model arm is even further simplified, as the emphasis was put on the study
of cortical feature maps. Although hundreds of elements were contained in the cortical layers,
very few elements were used to simulate arm neurons. For each muscle group, there was only one
element representing the activation of the entire group of neurons controlling this muscle group.
Such an simplification, although enough in supplying sensory information to cortical layers, is far
from biological system, where each muscle is controlled by many motor neurons.

This motor control model was developed for the study of cortical feature maps, and not for
actual arm position purposes. The unsupervised learning method used in the model did not force
the movement of the arm towards any specific target. As a result, the model is not able to perform
target reaching tasks accurately. However, during training, the stablized network caused some
kind of association between visual input and motor output, as described earlier. So this model did
exhibit some improvement in moving the arm close to a position where corresponding visual input
is supplied to cortical layers. But the overall performance of this model is incomparable to those
motor control models built for industrial reaching task purposes, which do not care about biological
plausibility.

The theoretical analysis in Chapter 7 was based on a simplified model. Therefore, the re-
sults obtained in this chapter serves as an illustration instead of a proof for the original motor
control model. Some part of the analysis, such as the derivation of conditions under which the
two anti-correlated input features cause mutually exclusive feature maps, has incorporated many
assumptions, which limit the applicability of the results obtained. These analysis results could
only help us understand better about the behavior of such type of network in general, and provide
a helpful hint for empirically choosing experimental parameters. They are not mathematically
applicable to our motor control model directly, even though many phenomena are similar.

Some future work in this motor control model may include building a more realistic arm model,
with more elements representing muscle activation. Instead of using accurate activation of single
elements to decide the degree of muscle contraction, different amounts of activated elements could
be used to determine how much a muscle contracts. This approach is more similar to biological
muscle control, where muscle activation is determined by the number of recruited motor units. Also
the training methods could be changed in some fashion. Target reaching is an easy task for human
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beings because we have an intention to reach that target. The current motor control model did not
implement such an “intention”. It is possible that a reinforcement learn method could produce a
better result. Moreover, additional mathematical analysis is necessary for this complicated motor
control model. For example, one might study further how cortical maps are influenced by parameter
settings. One might also want to study the stablization of activation patterns under competitive
distribution of activation. Current simulations showed that the activation of the network always
stablized after a certain number of time steps. This may be due to the right choice of parameters.
But more likely it is a property of such kinds of networks in general. Some previous work has proved
that total amount of activation in the network could converge under competitive distribution of
activation [Reggia & Edwards, 1990]. But there is no guarantee that individual elements could
reach an equilibrium point. In our work, the convergence for individual elements could be proved
only when there was a single input stimulation and there were no lateral connections. So the proof
of such convergence in a more general situation is of great interest. Similar to these above examples,
there are still many phenomena about the behavior of the network that were consistently observed
in simulations. These phenomena are also subject to theoretical investigation.
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Appendix A

Complete Cortical Feature Maps

In this Appendix, cortical feature maps in different versions of our motor control models are listed.
These maps are cataloged here to document representative examples of the model’s behavior. In
the model with proprioceptive input only, proprioceptive input maps in both PI and MI layer, as
well as motor output maps, are listed. In the model with visual input only, both MI motor output
maps and visual input maps are listed. In the model with combined proprioceptive and visual
inputs, the listed maps are: proprioceptive input maps in PI and MI; motor output maps in MI;
and visual input maps in MI.

A.1 Cortical Feature Maps of Motor Control Model with Pro-
prioceptive Input Only

A.1.1 Proprioceptive input maps in PI layer
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Figure A.1: Tuning of PI elements to the length of the upper arm extensor (E) and flexor (F)
before (left) and after (right) training (threshold=0.4).
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Figure A.2: Tuning of PI elements to the length of the upper arm abductor (B) and adductor (D)
before (left) and after (right) training (threshold=0.4).
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Figure A.3: Tuning of PI elements to the length of the lower arm extensor or operner (O) and
flexor or closer (C) before (left) and after (right) training (threshold=0.4).
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Figure A.4: Tuning of PI elements to the tension of the upper arm extensor (e) and flexor (f) before
(left) and after (right) training (threshold=0.4).

105



————— b--bb--bb--bb-- e e
________ b___b_______ _ e e e e e e e e e e e e e e e e = = =
b _______________________________________
——————————————————— b ----=-=-b----b--------
---bb---=-=-=-=-=-=-=-=----- bb---bb---bb---bb---
---b----b----- b----- - - - - - - - - - - - - - === ===
——————— bb----bb----- e T
————————————————— bb - -b---=-=--=-=-=--=-=-=--=----
-bb-------=-=-=-=---- b - - bb---bb---bb---bb---
-b--=-=---- bb-----=---- - == === == - === === - === -
_____ b______________ _ e e e e e e e e e e e e e e e e = = =
---=-bb------ b-----=-=- - - - - == - - - - - - - === ===
——————————— bb------- ----=-=-=--=-=-=-=-=-=-=-=-b---
b------ b-------- b--b bb---bb---bb---bb---
—————— bb-------bb--b e e T
__b _____________________________________
-bb------=---=-=-=-=--=-=-=- - === -=------ b----=----
————— bb--b-------Db-- bb---bb---bb---bb---
c. d.
dd----d------------- -dd---dd---dd---44d - -
d----=-=-=-=-=-=-—=--=-=-=-=---- -d----d----d4----4---
————————— dd---44d4--- - R
_________ d____d_____ _ e, e e e e e e e e e e e e e e e = = e
dd--------=-=-=---- d - - - -dd---dd---d4dd4---44d - -
---dd4------ d----4--- -d----d----d4----4---
--=-d4d------ dd-------- === - -=------
______ d_____________ _ e, e e e e e e e e e e e e e e e = = e
————— dd------4d4------ -dd---dd---d4d4---44d - -
———————— d---dd---44d - -d----d----d4----4---
dd----- dd-------- d-- - - - - - - - == - - - - - - ===
d _______________________________________
_____________ dd_____ _ e, e e e e e e e e e e e e e e e = = e
----4d---d4dd---d------ -dd---dd---dd---44d - -
---dd---d4d--------- d - -d----d----4----4---
_________________ dd_ _ e, e e e e e e e e e e e e e e e = = e
____________ d_______ - e e e e = e e e e e e e e e = = = =
—————— dd---44d4------- R

Figure A.5: Tuning of PI elements to the tension of the upper arm abductor (b) and adductor (d)
before (left) and after (right) training (threshold=0.4).
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Figure A.6: Tuning of PI elements to the tension of the lower arm extensor or operner (o) and
flexor or closer (c) before (left) and after (right) training (threshold=0.4).
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A.1.2 Proprioceptive input maps in MI layer

a b.
——————————————— EE-EE ----=-=-=-=--------EE---
---E---E------- EE- - - --EE----------- E----
--E---EE-----=------- -~ EE----=-=-----=-=--=-=--
--E---E--EE--------- --E---EE----=--------
E----=---- E---"=-"--=-=-=-=- == =-=-=-- EE----=--------
————————— E---E----EE ------E--=---=-=-=-=-=-=---
--EE----- E--EE---EE- = - ---=-=-=-=----- E----E- -
--E---"--"---=-"=-"=-"=-=-====-=- == === ==----- EE---EE- -
_________________ E__ _ e e e e e e e e e e e e e e e e = = =
---EE----=------- E-- - - -- === =-----=-=-=-=-=--=--
---EE----- EE---EE--- = === === -=-==---
————————— EE----EE-- - EE---------E--------
----EE---------- EEE - EE------ E--E----E---
----EE---------- EE-- - =-=-=-=-=-- EE------ EE - - -
___________________________ E____________
E---=-"=-=---=-=-=-=-=-=-=-=-=-=-- --E----"-=-"---=-=-=-=-=----
E-------- E---=-=--=--- E -EE--------- E-------
----EE--EE--EE---=--- - ==-=-=------- EE-------
----E---E----EE----- - =-=-=-=-=------ EE-------
E--EE-------- EE----E = - =----=--=-=-=-=-=-=-=-=-- E---
[ d.
—————————————————————————————————————— FF
——————— FF-------=-=-=-- -----=--=-=---------FF -
——————— F---FF--F-FF - -----F-------=-=--=-F - -
——————————— F--FFFF- - --=-=-FF-----=-=-=-=---=-=--
-F--=-=-=-=-=-=-=-=--- F----- --FF----- FF---------
FF------=-=-=-=-=-=-=-=-=-=-=-- -FF----- FF----------
F---FFFFF----------- FF------ FF----------
---FF------=-=-=-=-=-===-=- == === === ---- F------
-FF--------- F------- ----F--=-=---- FF------
-F---=-=-=-=-=-- FF---F--- ---FF------ FF-------
F-----=-=-=-=-- F---FF--- = =—-—==-=-=-=-=-== FF---------
—————— F------------F ----F----F------=-=-=--
----FFF----------- FF ---FF-------=-=-=-=-=-=-=--
---FF-------=-=-=-=-=-- | e T T R R R T T
—————————————————— F - ---=-=-=-=-=---------FFF-
———————— FF--FF---F-- ------------FFFFFF- -
———————— F---FF------ ------F------FF-----
F---=-=-=-=-=-=-=-- F------- " =-==-=-- FFF------------
FF-FF---------- FF--F = ---=-=-- F---=-=-=-=-=-=-=-=-=--
---F-=-=-=-=-=-=-=-=-=-- F---- === === === - - === - F

Figure A.7: Tuning of MI elements to the length of the upper arm extensor (E) and flexor (F)
before (left) and after (right) training (threshold=0.4).
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a. b.

--B----- B----BBB---- --BB---BB----BB-----
——————— B-----BB----- -------------BB-----
———————————————— BB - - ------------BB------
--BB------=-=----- BB-- = - -=--- BB----- BB
-BB----- BB---------- | - === === === == - == - B BB
BB------ BB--------- e T T T B -
———————— BB-BB-----B- --B------=-=-=--=-=--=----
——————————— BB------- -BB-------=----=--=-=-=--
--BB------- B-------- BB----BBB-----------
-BB---------=-=-=---- B- o --=--- BBB------------
————————————— B----B- ----=-=-=---=-=---B------
—————— B-----BB------ ------------BB------
————— BB----BB------- ------------BB------
————— BBB---B-------- ------------BB------
B----- B----=-=-=-=---- BB B----BB----- B-------
B----=-=-=-=--=-=-- B----BB B----BB------------ B
BB----- BB---BB------ B----=-=-=-=-=-=-=-=-=-=-=-=-=-- B
BB----- B----B------- B---=---=-=-=-=-=-=-=-=-=-=-=-- B
-B----=-=---- B-----=-=-- === B---=--=-=-=----
-BBB------ BB-------- ---B---BB-----------
[ d.
D--------- D------- DD DD-----=-=----=-=-=-=--= DDD
————————— DD-----DD - - p----------------DDD
——————————————— D---- ----DD--------=-=-=----
-DpDDDD----D---D----- ---DD---D---------~--
D---D----- D--D----- D --DD----D-----------
————————— D--------DD -DD----DDDDD--------
———————— D---------0D- pD-------DDD---DD--- -
——————— DD-----D----- p------------DD----D
-DD----D------ D----- - -- - - - - - - - - - - - === ==
DD--------- D------=-=- = === -=-=---=-=-----
D-----=-=--- DD----DD - - ---D----=-=-=-=-=-=-=-=-=--=--
—————————— D----DD-- - ---DD----DD---------
---D----=-=-=-=-=-=-=-=-=--=-- ---DD----D----- D--D -
---D-----=-=-=-=-=-=-=-=---- ---DD---------=--- DD -
--pD--DD----DD---DD- = - - - - - - - - - -~ DD - -
—————— DD--DDD----D - - ----------DD------=--
—————— D--DD--------~- ---------DD---DD----
————— pD-------DD---- -----DDDDD---DD---~- -
----DD------- pD----- === DD-----=-=-----=-=-
D _______________________________________

Figure A.8: Tuning of MI elements to the length of the upper arm abductor (B) and adductor (D)
before (left) and after (right) training (threshold=0.4).
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————————————————————————— 00---000-----~--
—————— 0------00----- --=--=--=----00---=-=----
————— o0------00----- -0---=--=-=-=-=-=-=-=-=--=----=
—————————————— 0---0- 00---------=-----0---
———————— 0-----0--00 - -----=-=--------000---
——————— oo0oo0-------0-- ----=-=--------000----
00----- 00------=-=-=-=-=- ----000---=----=-=-=-=-=--=
00--------=-- 0------- ---000----=----=-=-=-=-=--
___________ 00_______ _ e e e e e e e e e e e e e e e e = = =
--00------- 00--0---- -0----=---=-=-=-=---- 0---
--0----=---- 0--00---- 0----=-=-=-=-=-=-=--- 0oo0oo0O0O0O
————— 00-------0----- ------00------00--0-
————— 00------=-=-=-=-=-=--= --0---00------=----+--
————— 0------------0@80 -00---=---=-=-=-=-=-=-=-=-=-=--
————— 0--00-------00 - ---=-=-=-=-=--0----=------
-0------ 0------- oo0-- - =------- 00--------=--
00--------=-= 0------- ---0----0----=---- 0--
0----=-=---=-- 00------- --00------=-=-=--=-- 00 - -
----0------ 0------- 0 --0------=-=-=-=---- 00 - -
---00-----=-=-=-=-=-=-=-- o- - ----- 0-----=-=--=-=-=-=-=-
[ d.
cceCc------ C--=-=-=-=-=-=-- [ ccC
--¢c¢C---CcC----- ccC---- --------- - - - - - === - ccC
————— c¢c-------¢CC---- ----=-C--=-=-=-=-=-=-=-=-----
—————————————— c----¢ ----CC---=-=-=-=-=-=-=-=----
————————— c----Cc---¢CC --¢cCcC----¢CC---------
---CcC----C----- c----- -cCC----- ccCc---------
--¢CC---CC-----=------+- cC------- C--=--=-=-=-=--=-
__CC ____________________________________
--C---=-=----- cCcC------ ----C------- cCc----- [
——————————— cc--¢cC--- ---¢c¢C------¢cCC----¢C -
---C------ cc---CcC--- ----C----- cC--------
---CcC----- cC----- c---- ----¢cCC----C--=-=-=-=-=-=--
---CcC---CC----- cCc---- ----C---=-=-=-=-=-=-=-=-----
--CC---C------ c---CC = - === === - - - - -
-C----C---=---=-=-=-=-- cec 000 - -----=-=-=-=-=-=-=-=--= ceccC--
————————— cC-----=-=-=-- -----------¢CCCCCCC--
————— cC---C----=-=-=-=-=-=- ------¢C----CcC-CC-----
----C--=-=-=-=-=--- c----- - =-=--- cCcC----=--=-=-=-=-=-=-
---CcC---=----- ccc----- == =-=-=-- C-=-=--=-=-=-=-=-=-=-=--
cCCcCCC---=----=-=---=-=-=-=- [ C-=-=--=-=-=-=-=--==-=-=-=-=-=-- [

Figure A.9: Tuning of MI elements to the length of the lower arm extensor or operner (O) and
flexor or closer (C) before (left) and after (right) training (threshold=0.4).
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- - --—ee-----------=-=-=- - === - === - -=-=-=--=---- e e
——————————————— e - - - - - - - - - - - - - - - - - --=--¢e -
—————————————— ee-- - - - - - - —e - - - - - === ===
———————————————— e e - - - ---—ee--------------
—————— ee-----------@¢ - -—ee-----ee-~-------~-
————— eee- - - - - - ------= —ee-----eee-~-------~-
e - - e- - - --=-=----=------ ee------ ee----------=
e-—ee - - - - - - - --=-=--=--- e 0 - - - - === === =-- e - - ----
———————— ee---—ee--¢ee - ----e-------¢ee------
--—ee---ee---—ee---¢e- - ---—ee------ ee-------
- -—ee--—e------------=- - ==-=------= ee---------
————— ee- - - ---------- ----—ee---—e-~---------=
————— ee-----------%¢e ---—ee---------------
—————— e---—ee---eeece - e
—————— e---—e----e-- - - - -- - - -----------¢g¢ee&e-
e - - - -—e--------=---=-=-=- - === -=-=----- eeeceece - -
e - - - - - - - - - =---=-=----- e 0 =-=-=-=-=-- e - - - - - - ee-- - - -
e---—e------ ee------ e - =-=--- eee - - - ---------=
e--—ee- - - - - eeeee----¢ - -=--=--= e - - - - =---=-=-----
- -—-—ee--—e-eee-ee-~-~--- = === - - - ----=----=---- e
[ d.
ff-------- f----f£f--- - === - === =--=----- ff---
f--------- f--------- --ff------=----- f----
—————————— f--------- --ff-----=-=-"=--=-=------
--fffft---f----f£----- --f---ff--=-=--=-=-=-----
--ffff---f---ff----- - =----- ff------=------
———————— ftf--ff----¢f- ---=-=-=-f-=-=-=-=-=-=-=-=-----
———————— ff-------ff- ---=-=-=-=-=--=-=-=-f-=---1- -
————————————————— f - - ---=-=-=-=--=---ff---f£f--
____________________________________ f___
--ff------- ff------=- | === === - === -=-=---
--ff--f---ff----- o e R R T T T
————— ftf---f------f-- ff---------f€----=----
————— ff------=-=------ ff------f--f----f---
————— f------ff£f------ --=--=-=-=-ff------f€£f---
———————————— ftf----1f- ---=-=-=-=-f--=-=-=-=-=-=-=----
ff------=-=---=-=---- ff- --f---=-=-=--=-=---=------
ff----f£ff-----=------- -ff--------- f-------
————— fff------=------ ---=-=-=-=-=-=-=-=-ff-=------
—————— f----ff------- ----=-=-=-=-=-=-=-ff-=-=-----
—————————— ftf---f£f--- T

Figure A.10: Tuning of MI elements to the tension of the upper arm extensor (e) and flexor (f)
before (left) and after (right) training (threshold=0.4).
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-b--=-=-=-=-=-=-=-=-=-=-=-=-=---- -b--b------=-=----- b - -
——————— bbb---------- bb--b-----------bb- -
--b----bbbb----bb--- ---=-b---bb----------
--b---=--=-=-=----- bb--- ---b----b------=-----
-b--=-=-=----- b-----=-=-- " -=====--- b---b-------
-b--=--=----- b----=--=-- " -===-=-- b---bb-------
bb-------- bb----bb-- = --=-===-=---- bb---b----
b---bb----b----- b--- - --- === == - = bb--bb
b---bb---b-----=-=---- - === === - == - === bb
----b---b----bb----- - === == - == - === - - - === -
——————— bb---bb------ --bb-----=-=-=-=-=-=-=-----
——————— b----b-----Dbb --bb----=-=-=--=-=-=------
——————————— b------b- ---------b----bb--bb
--b------- b---=--=---- ---bb---bb----b--bb-
--b-bb----=---=-=-=----- ---bb---b-----------
---=-bb------ bb------ ---b----=-=-=-=-=-=-=--=----
———————— b---bb----bb ---=-=-=-=-=-=-bb--=--=-----
——————— bb---bb--bbbb ------=---b---bbb----
———————————— b--bb--- ----bb-------bb-----
-bbb----------=------ ----b--=-=-=-=-=-=----- b - -
c. d.
———————— d----4d4dd4----- --dd---dd----4dd-----
———————— d----4----4- --=--=-=-=-=-=-=-=---4d4-----
———————————— d----44d - ----=-=-=--=-=---44d4------
dddd------- dd----- dd4d - -=-=-=-=-=-=---= dd----- dd
d-d-------=-=-=-=-=-=-=--- [« e T T ddd
_____________________________________ dd_
—————— ddd----dd----- --d-------=-=---=--=----
————— dddd----4d44d4----- - dd-------=-=--=-=--=----
-dd---------- d------ dd----ddd-----------
dd---------=--=--=-=-=-=-=- - -----= dd-----=---=---=
————————— d-----4d-- - -----=-=-=-=-=-=-=--4------
——————— ddd----dd---- ---=-=-=-=--=-=---44d------
----d4d-4d4d4d4----- d-----  —=- === === == dd------
--=-dd4d-----=---=---- d-- - - =-=-- dd------
--d------ dd----- dd- - d----dd4----------=-= d
-d------ ddd----- d - - - d----dd----------=-- d
dd-------- d--------- d----=-=-=-=-=--=-=-=-=-=-=-=-- d
d-------- dd--------- d--=-=---=-=-=-=--=-=-=-=-=-=-- d
d---d----4dd-------- 4d - -=-=-=-=-=-- d-----=-=-----
---d4----4d----d----- ---d---4d44d4----- d-----

Figure A.11: Tuning of MI elements to the tension of the upper arm abductor (b) and adductor
(d) before (left) and after (right) training (threshold=0.4).
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—————————— coo0o--00-- - - 0o ----------------900-
————————— co---0----- 0---------=---------09
- -0 0000~-~-~-—=-—--------- === ----- oo ---------= o
- --0000------------- - === ----= oo - -----=-=---=
———————————————— oo - - ---00---00---------~-
————————— oo0o0----0--- ---00------0--------
————————— co0o0--~-----~- ----=------00--------
- --0 - - ---=-=-=-=------ co - - === -=-=-=--= o---00-- - -
--—00------=-=--=----= co- - === === =-=-=--=-- o---o0o0
- -0 ----0---0-------- = === === - - === --=--=-- oo
—————— oo0o--00--00--- - - --00-------=--=--=----=
————— oo0o---0---00-- - - ---00----------00-=---
----0%00--------= oo - - - - ----900---00----0---0
0O - - - - -=---=-=-----= 00000 ----0%00---—0-------~- o -
________________ o - - - e e e g m m e e e e e m e o
____________________________________ o - - -
—————— 0o0-00--------~- ---------00----00---
-00------ co--------=- = =-=-=-----= co---00-- - -
0000 -—=-—~-—~-—-—=---—-=-=------ - === 0O - - - -=-=---=-=-----
-~ 00 - - -----=--=---= o---- ----00-------=--=-- oo -
c. d.
---¢cccc-¢cc------- c-- - =-=-=-= cc---¢ccc-------
---¢c¢c--¢c¢c----=------- === -=-=--- cc----=----
_____________ C - - - - G m e e e e e e e e e e e - - -
———————————— cc----cc cc----=----=------¢-~---
c----=-=--=-=---= cc----¢cc === =-=-=-=-=-=--=---- ccc- - -
- - -Cc--------=--=-=-=-=-=-=- - === =--=-=-=----- ccec- - - -
--—cc---¢c----------=-- ----¢ccc------=-=----=--
- cc---¢cc----- c------ ----Ccc----=--=-=-=-=-----=
—————— ccc--=------=-=-=- e e
———————— c-----¢cc---- - ¢c-------------¢c¢c---
—————————————— cc---- c-------------¢cccccc
C—-=—--=-=-=--=--=-=---- cc--- === --- cc------ cc--¢-
cc--—-—=-—---=-=-=-=--= cc---c¢ --¢c---¢cc--------=--=--
c-cc----¢c¢c---~------- - CcCc - - - - - -=-=-=-=-=-=-=-----
———————— cccc-------- - - - - - - - - =-Cc--=--=--=----
---Cc---------=-=-=-=-=-=-=- - ==-=-----= cc----=-=--=-=--
---c----=-=-=-=-=-- c----- ---¢c----¢-------- c - -
--—c----=--=-=--- c------ --—cc-----=-=--=--=-- cc - -
———————————— cc--¢cc- - --c-------------¢¢--
———————————————— cc- - - - - - --Cc--=--=-=-=-=------

Figure A.12: Tuning of MI elements to the tension of the lower arm extensor or operner (o) and
flexor or closer (c) before (left) and after (right) training (threshold=0.4).

113



A.1.3 Motor output maps in MI layer

a b.
———————————————————— E--- - - - - ----------EE
E---E---------- E---- - === === EEE
—————— E-E----E------ -----—E--=-=-=--=-=-=-=-=-=---
---E--=-=-=-=---- E------ ----EE------=--------
————— E---------E---- --EEE---EEE---------
————————— E---=-=-=-=---- -EE-----EEE---------
———————————————————— EE------EE----E-----
EE-------- E------- E- @ ----=-=-=-=-=-=--=-- EE-----
--E---E----- E------- ----E---=---- EEE-----
————— E-E-E-----E---E ---EE------EEE----E -
—————————— E----E---- ---E-----EEE--------
————— E--- - - --------E ----EE---EE---------
————————— E--E--E---- ---EE-------=-=-=-=--=---
______ E_____________ ___E________________
——————— E-------EE--E ---------------EEEE -
——————————————— E---E -----------EEEEEEE- -
-E---"=-"-=-"--"-"=-"=-"=-"======- = ==-=--=- EE---EE-EEE--- -
————— E-E------=------+- -----EEE------------
-E----=-"=-=-=-"=-"=-=-=-=-=====- == --- EE------=-=------
-E--E----------- E--E E---"=-=-"=---=-=-=-=-=-=-=-=-=-- E
[ d.
————— F--------=---=-F - ---=-=-=-=-=--------FF---
————————————— F-F---- --FF--------=-=--F----
————— F---F-F--F---F - --FF---F------=-=-----+-
F--F---------=-- FF--- --F---FF----=--------
--F--=-=-=-=-=-=-=-=-=-==-====- == -=-=-- FF--------=-=-=--
————— F-F---------FF - ---=---F-=-=--=-=-=-=-=-=-=---
—————————————— F--F-F ------=-=-----F----FF -
F-F---F---=-=-=-=-=----=-- === ======--= FF---FFF-
——————— F--------FF- - -----=--=-=-=-=-=-----FF - -
——————— F---F--FF-F- - e
--F--F-----=-=-=-=-=-=-=--- --F--=-=-=-=-=-=-=-=-==-=-=-=-=--
--F---F------=-=-=-=-=-=--=- FFF-------- FF-------
-F----F------=-=-=-=-- F - FF------ F-FF---FF---
————————————— F--F--- F------FF------FF---
FF-------=-=-=-=--=- F--F-- = =-==-=-=-=-- F-----=-=-=-=-=-=--
——————— F----------F - --F--=-=-=-=-=--=-=-=-=-=-=----
F---=----- F---=-=-=-=---- -FF--------- F-------
———————— F----FF----- ---=-=-=-=-=----FF--=-=----
————————— F----FF-F-F ---=---=-=-=---FF-------
-F-F----=----=-=-=-=====- === === ===-=-=- FF---

Figure A.13: MI output map before (left) and after (right) training for upper arm extensor (E)
and flexor (F) (threshold=0.4).
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---B----=-=-=-=-=---- B--- BBBBB----------~- BB - -
--B----- B----B--BB- - BB------ BB------ B--B
B-B----BB--------- B - ---BB--BBB--------- B
———————————————————— ---BB--BB-----------
————— B----B--------- ---BB--BB---BB------
--B-------- B-------- ---B---B---BB-------
——————————— B-------- ----------BBB-BB--- -
---B---B--------=---- B---=-=----- BB--BB--BB
---B--=--=-=-=-=---- B---- - - -- - - - - - - == === BB
__________________ B_ __________________B_
———————————— B-----B- --BBB---------------
—————————————————— B - -BBB------------B---
————————————————————————————— BB---BBB-BB
———————— B-----BB--B - ----B---BBB---BB--B-
——————— B-B-B-------- ---BB---B-----------
———————— B-B-B--B---- --BB------B---------
—————————— B---=--=---- --B------BB---BBB---
--B--=-=--=-=-=-=---- B---- === =- BB--BBB----
---B---B----------- B ----BB---B----B-----
—————————— BB---B---- ----BB-----------BB-
[ d.
———————————————————— --DpD---DD----DD---- -
—————————— D-----=-=--- -------D-----DD---- -
D------=-=-=-=-=-=-- D-D---  --=-=-==-===-- D-DDD---- -
----D----=-=--=--=-"=-=--=-=- - === - ----= DDDDDD---DD
————— D---------D---- -----=-=-----------DDD
-D--D-----------~- D-D = - - - --- == === === == DD -
___________ D________ __D_________________
——————————————— D---- -DD-------=----=-=-=--=--=
—————————————— DD--D - DD----DDDD--------~--
---D-----=-"=-"=-=-=-"=-=-=-=-=-=- - ==--- DDDD----------~-
___________ D________ _____________D______
——————————————————— D -----=-------DD------
---D------- D------=-=- === === === DD------
———————————— DD------ ------------DDD-----
D--D------- D----D--- D----DD----- DD----- D
——————————————— D--D- p----DD------------0D
————— p-------D---D- - D----------=----=----7
——————— D-----D------ pD-----------------9D
——————— D------D----- p-------D-----DD--- -
————— D-----D-------- ---D---DD-----D-----

Figure A.14: MI output map before (left) and after (right) training for upper arm abductor (B)
and adductor (D) (threshold=0.4).
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———————————————————— E-----------------EE
E---E---------- E---- - - - - - == EEE
—————— E-E----E------ -----E---=----=-=-=-----
---E----=-=-=--- E------ ----EE-----=---------
————— E---------E---- --EEE---EEE---------
————————— E-----=-=-=--- -EE-----EEE---------
———————————————————— EE------EE----E-----
EE-------- E------- E- @ -----=--=-=-=-=--- EE-----
--E---E----- E------- ----E------- EEE-----
————— E-E-E-----E---E ---EE------EEE----E -
—————————— E----E---- ---E-----EEE--------
————— E-------------E ----EE---EE---------
————————— E--E--E---- ---EE---------------
______ E_____________ ___E________________
——————— E-------EE--E ---------------EEEE -
——————————————— E---E -----------EEEEEEE- -
-E-----"-"-"-"=-"=-"=-"=-"="=-"==-=-=- " -==--- EE---EE-EEE----
————— E-E----=-------- -----EEE------------
-E-------=-"-"-"=-="=-=-=-=-=-=- " -=--- EE-----=--------
-E--E----------- E--E E-----=-=-=-=-=-=-=-=-=-=-=-=-- E
[ d.
————— F-------=-----F- ------=----=-----FF---
————————————— F-F---- --FF-----------F----
————— F---F-F--F---F - --FF---F-----=-=------
F--F---------=-- FF--- --F---FF------------
--F-----=-=-"=-"=-"=-"=-"=-"=-=-=-=-=- " -==-=--- FF-------=-=----
————— F-F---------FF - ------F--=-=-=-=-=-=-=-=--=--
—————————————— F--F-F ------------F----FF -
F-F---F-----=----=-=--- === ====-=-=-=-- FF---FFF-
——————— F--------FF - - -----=----=-------FF - -
——————— F---F--FF-F-- e T
--F--F----=-=--------- --F--=-=---=-=-=-=-=-=-=-=--=--
--F---F------------- FFF-------- FF-------
-F----F---=-------- F - FF------ F-FF---FF-- -
————————————— F--F--- F------FF------FF---
FF--------=---=- F--F-- = =-=-=-=--=-- F--=-=-=-=-=-=-=----
——————— F----------F - --F---=--=--=-=---=-=-=--=--
F---=----- F---=-=-=-=-=--- -FF--------- F-------
———————— F----FF----- ------=-----FF-------
————————— F----FF-F-F -----=-=-----FF-------
-F-F------=---=-=-=---=-=- || === === === === FF---

Figure A.15: MI output map before (left) and after (right) training for lower arm extensor or opener

(O) and flexor or closer (C) (threshold=0.4).
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A.2 Cortical Feature Maps of Motor Control Model with Visual
Input Only

A.2.1 Motor output maps in MI layer

a. b.
----E----E---E------ - -2 - - -=-- - -=-=----=-----
-EEE--E------- E----E = -—------=-------- EEE - - -

-E----EEE-------- E - - EE----- EE----EEEE--E
————————— E------E--- E-----EEE---EEEEEEEE

----E--------- E----E - - -E- - - - - - - - - -

c. d.
——————————— F----=---- FF---FFF--FF--------
--F--=---=-=-=-=-=-=---- F-- FF---FF---FF------- F

——————————— FF------- --FF--=---F-=-=--------

Figure A.16: MI output map before (left) and after (right) training for upper arm extensor (E)
and flexor (F) (threshold=0.4).
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—————————————————————————————— BB-----B--
_______________ B_B__ _ e e e e e e e e e e e e e e e e = = =
——————————————— BB--- B-----------------BB
-B-B-----=-=-----=---=-=- | - === - - - === === - - === BB
--B-B------------- B - ----BB------------=-=
B-----=-=-=-=-=-=-=-=-=-=-=-=--- ----BB------------=--
————— B-----=-=-=-=-=-=-=--- ---BB-----BB--------
————— B--B----------- ---------BBB--------
----B---B-B--------- B----=----- BBB-------
—————————————— B----- B-------------BB---8B
--B---B----------- T T BB----
_B ________ B _____________________________
__B _______ B _____________________________
——————— B-------BB--- --BBB---------------
BB-----=----=-=-=-=-=-=-=-=-- --BBB---------------
B--B-------- B------- --BBB--------- B-----
---B---B----------=-- --BBB--BB----BB-----
BB-B--B------------ B ---B---BB----B------
-B-B---B-B---------- - === --- B---=-=----- B BB
-B---B----B-------- B @ - --- B----- BB -
[ d.
————————— DDDD------D ---DD---DD--------~--
——————————— D-D------ --DDD------DD----D - -
---D----D-----=-=----- - == === === DD---D---
_____________ DD_____ _ e, e e e e e e e e e e e e e e e = = e
D------ D-D----=---=-=-- == === - === === - - - ===
DD----- D----D-----=-- === === - === === === ==
----D--=-=-=-=---- D----- - ==-=-=-- D-----=-=---=--
-D-----=-=-=-=-=-=-=---=-- pD- - ==--- DD----DD----~-
——————————————————— D ------------DDD-----
———————————— D------- --pD-------------DD -
-D-----=--- D-----=-=-=-- -DD-------=--=---- DD - -
---D---D------------ -D----DD------- DD- - -
———————— D----------D -----DD-------DD~--- -
——————————————— D---- -----=-=-------DD-----
---D----D-D-D------- - === === ===~ DD------
—————————————————————————— D----DD-------
——————————— D-D-----D p----DD----D-------D
—————— D------D--D-D - -----=-----=--------DD
————————— D---DD----- --=--=-=-=---D----=-=-=----
————— D-D--D--DD---- - --------DD--------=--

Figure A.17: MI output map before (left) and after (right) training for upper arm abductor (B)
and adductor (D) (threshold=0.4).
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-E----EEE-------- E - - EE----- EE----EEEE--E
————————— E------E--- E-----EEE---EEEEEEEE
--EE------- E---E--E- - ---- EEE----- EE--EEE
————— E---EE---E-E--- ----EEE---------EEE-

-E-E------ E-E----=-=-- - ooooooomo oo E - -

----E-----=-=--- E----E ----E----=-=-=--=-=-=-=--=--
c. d.

——————————— F-------- FF---FFF--FF--------
I R F - - FF---FF---FF------- F

——————————— FF------- --FF--=---F-=-=--------

SF - - - - - - - - - - F---F FFF----- FF----FF----

Figure A.18: MI output map before (left) and after (right) training for lower arm extensor or opener

(O) and flexor or closer (C) (threshold=0.4).

119



A.2.2 Visual input maps in MI layer

a. b.
---Xl--=-=-=---- X1- - - - X1- - - -
---X1------- X1- - - - X1- - - X1X
_______________ Xl____ -
_______ Xl____________ -
- - X1X1- - - - - - - -=-=-=-----
__Xl _________________
_________ Xl__________
———————— X1X1- - - - - - - X1t- -
————————————— X1X1- - - - -
--=--X1----=---- Xt- - - - - -

---Xl--=-=-=---- Xt- - =-=----

- - X1Xt-------- X1- - - X1X1- -
_________________ Xl_
________________ Xl__

----X1X1------=-=---- -
___Xl ______________
- - X1X1----=-=-=-=-=-=--- -
c. d.
——————— X2- - - X2X2- - - - - - - - -
- === - X2- - - X2- - X2- - - X2X2 - -
_____________ X2______ -
__X2 __________________
________________ X2___
—————— X2- - - - - - - - X2X2- - -
————— X2-----X2----=-=---
X2- - ---- X2--=-=-=-=-=-=--=-- X2
——————— X2- - - --X2-----X2
____________ X2_______

___X2 ________________

__X2 _________________
————————— X2X2- - - - X2- - - -
- === - - X2- - - - X2- - - -
-X2---=-=-=---- X2X2- - - - - -

___________ X2______
----X2X2----=---=-----
e. f.

- - =-=-X¥3--=-=-=--=-=-=-=-=---- X3 - -
---X3---=-=-=-=-=-=-=-=-=-=-- X3- - -
——————— X3- - - - -X3------ -

X3- - - - - - X3- - - - X3k3------ -

_____________ X3______
_________ X3__________
- - - -X3-- - X3X3- - ---- - X3- -
X3- - -X3-------- X3- - X3- - -
______ X3_____________
______ X3_____________

_____________ X3______

_____________ X3______

___X3 ________________
- - X3X3- - --X3--------- X3-
________ X3__________
- - -X3%3------=-=-=-=-=----
X3X3X3X3- - - - - - - - - - - - - -

X3--=-=-=-=-=-=-=-=-=-=-=-=-=---

Figure A.19: The MI input maps with respect

dimension (threshold=0.3).

- - XIXIXl- - - - - - - - - - - - -
1X1X1X1- - - - - - - X1- - - - - - -
__________ Xl________
___Xl ________________
- - XiXi- - - - - X1- = - - - - - - - -
————————— X1- - - XiXi- - - - -
_____________ Xl______
_______________ Xl____
—————————————— X1X1- - - -
- XiXl- - - - - - - - - - - X1- - - - -
- XIXAXAXL- - - - - - - - - X1- - - - -
I b ¢ i N
- I ¢ ¢
- ____Xl _______________
____________________ Xl_
——————————————————— X1X1-
_________ Xl_____________
_____________ X2____
———————————— X2X2- - - -
_____________ X2_____
—————————————— X2X2X2- - -
—————— X2- - - - - - X2X2X2X2X2X2X2
————— X2X2- - - - - - - - - - X2X2X2
_____ X2______________
_____ X2______________
I ¢ X2- -
——————————— X2X2- - - X2X2- -
___________ X2________
_____________ X3____
———————————— X3%3- - - -
———————————— X3%3- - - - -
—————————————— X3X3%3- - -
—————————————— X3X3X3X3X3X3
————— X3%3- - - - - - - - - - X3X3X3
_____ X3______________
_____ X3______________
- - - - X3%3- - - - - - - - - - - X3- -
——————————— X3- - - - - X3- -
___________ X3________

to visual input (in the X dimension), before (left)
and after (right) training. X1, X2 and X3 code the negative, middle and positive range in the X
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a. b.
--Y1----- Yi- - - ¥1- - - - - - - Y1v¥1- - - ¥1¥1- - - - - = = = = = - - -

——————————— Yiyi- - - - - - - Yiyi- - - ¥1- - - - ¥1- - - - - - - - -
______________ Yl_____ - e = e e e e e e e e e e e e e = = = =
________ Yl___________ _ e, e e e e e e e e e e e e e e e = = e
——————— Yiyi- - - - - - - - - - - T
Yiyi- - - - - - - - - - =-=-=-=-=-=--= - == - - - - === - === - == ---
——————————— Yivi- ¥i- - - - - - - ¥Yl--=-=-=-=--=-=-=-=-=-=-=----
—————————— Yiv1- ¥Yi1Y1- - - - - - Yi¥i- - - - - - - - - - == - - - - -
--=-Y¥Yl--=-=-=-=-=-=-=-=-=-=-=---- -Yi----- - Yiyi- - - - - - - - - -
———————————————————————————— Yiyi- - - Yi¥1- - - - -
—————————— Yivyi- - - - - - - - - - - - - =-=-=-=-----Y1iVY1- - - - -
—————————————————— YivY1 e R
————————————— YivYi- - - Yi- - Yi¥i- - - --=---=-=-=--=---- -
____________________ _Yl__________________
__________________________ Yl_____________
————————————————————————— Yiyi- - - - - - Y1¥1- - - - -
Yi- - - ------- Yi- - - ----- === === == === = - Yi- - - - - -
—————————— Yivyi- - - - - - - - - - - - - - - - =-=-=-------Y1Y1-
————————————————— Yi- - R T 4
———————— Yiyi- - - - - - YiVi- - -- - - =-=-Y1-=-=--=-=-=-=-=-=---=-
[ d.
- Y2¥2- - - --=---=-=-=-=------ - - - Y2Y2- - - Y2Y2- - - - - - - - - -
—————————— Y2- - ------- --=-Y¥2----=--=-=-Y2------ -
————————— Y2- - -------- ----=-=-=-=-=-=--Y2-------Y2
————————————— Y2y2- - - - - I il R /4
Y2- - - -=---------=-=-=-=-=-- == --=- Y- - - ---=-=-=------
____________________ ____Y2_______________
- Y2y2- - - - - - - - Y2y2- y2v2- - - - = - - - - - === - - - - - - == == ==
-Y¥Y2--=-=-=----- ¥Y2- - Y2----- - - - - - - - - = - m - - === ===
——————————————————————————————— Y2y2- - - - - - -
——————— Y2y2- - - - - - - - - - - - - === === Y2- - - - == - -
- =-Y2----Y2--- - - Y2- - - - - - -Y2----=-=-=-=-=-=-=---- Y2- - -
-Y2----y2Y2-----=-=--=-=-=-=- —- === === - - - - - - Y2Y2- - -
————— Y2- - - ---=-=-=-=----- --=-=-=-Y2--------Y2Y2- - - -
————— ¥2- - ------Y2---- - - - - -Y2Y2- - - - - - - Y2Y2- - - - -
————————————— Y2y2- - - - - - - -Y2¥Y2--------yY2- - - - - -
—————— Y2- Y2Y2- - - - - - - - - - - - - Y¥Y2- - - - - - - - =-=-=-=-=----
——————————————————————————— Y2y2- - - - - - - - - - -
———————————— Y2- - Y2- - - - e R R 421
—————————————— Y2y2- - - - ---=-=-=-=-=-=-Y2--------Y2-
e f.
—————— ¥3- - - - - - -----Y3- e R
________ Y3___________ _ e e e e e e e e e e e e e e e e = = =
- ¥3- - - - - ¥3y3- - - - ---=-=-=-=- | === === === - - - - - ¥Y3- - - -
—————————————————— Y3- - -=-----------Y3Y3Y3- - - -
————————————————— Y3- - ------=-------Y3Y3- - - -Y3
————————————— Y3Y3- - - - - -------¥3----------1Y3Y3
- ¥3- Y3¥3- - - - - - - Y3y3- - - ------ === === Y3y3- - - - - - - - - Y3Y3-
————— ¥Y3- - - -=-=-=-=-=-=-=-=--- - - - =--Y¥3¥3-----=-=-=-=-----
————— ¥3- - - - =-=-=--Y3---- - - - - -Y¥3¥Y3-----=-=-=-=-=-----
————————————— ¥Y3- - - - - - - - - =-Y¥3----=-=-=-=-=-=-=-=----
- ¥3¥Y3- - -------=-=-=-=-=-=-=-=- | “ == === === =-=-=-=-=---=
- Y3¥3- - - - - - - - - - - - ¥Y3- - -- - - - - - - - - - - - - - - - - ===
--Y3----=-=-=-=-=---- ¥Y3- - -- - - m - - - - - - === === - Y3Y3- -
——————— ¥Y3- - - - =-=-=-=-=--- - - - - ---=--=-------Y3Y3- - -
——————— ¥3- - - -Y¥3------ - - ¥3---=-=-=-=-=-=-=-=-=-=-=-=----
——————————— ¥3- - - - =-- - - ¥3¥3- - - - - - - - =-=-=-=-=-=---- -
____________________ Y3___________________
—————————————— Y3Y3- - - - e R
- - - -Y¥3¥Y3-----=-=-=-=-=----- - - - -Y¥3¥Y3------=-=-=-=-----
——————— ¥Y3- - - -=-=-=-=-=-=-- - - - - =-Y¥3----=--=-=-=-=-=-=----

Figure A.20: The MI input maps with respect to visual input (in the Y dimension), before (left)
and after (right) training. Y1, Y2 and Y3 code the negative, middle and positive range in the Y
dimension (threshold=0.3).
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a. b.

Z1- - = = = = == = = = = === - - - - - --Z17Z1- - - Z1- - - = - - - - - - -
———————————— Z1- - - - - -171 - - Z121721- - - - - - = Z1- - - - - - -
-Z1----=----- 1---=-=-=-=-=- - === === === - Z1721- - - - - - -
—————— Z1721- - - - - - - - - - -171 - - - =-=-=-7Zl1---=-=-=-=-=--- -
—————————————————— Z1- - - -----171721- - - - Z1Z1- - - - -
_________________________________ Zl______
———————————————— Z1- - 71 --Zl----=----=-=-=-=-=-=--- -
-Zl1---=-=-=--=-=-=---- Z17Z1- 7171 - Z1721- - - - - - - - - - - - - Z1Z1- -
-Zl1----=-=-=--=--=-=-=-=-=-=-=-=- = ==-=---=- Z1- - - - - - - - Z1Z1- - -
—————— Z1721- - - - - - - - - - - - -----17Z1721- - - - - - - Z17Z1- - - -
————————— Z1721- - - - - - - - - e R
_________ Zl__________ _ e, e e e e e e e e e e e e e e e = = e
- Z1721- - - - - - - - - - - - Z1Z21- - - - = = = = == == - - - === === =
-Zl----=-=-----=-=-=-=-=-=-==- =D& == === - === =-=-=-=-=-=---= Z1
———————————————— Z1- - - A |
——————— Z1- - Z1Z1- - - Z1Z1- - - T
—————— Z1- - -Z1- - - - - - - - - - - - =-----7Z1721- - - - = - - - - -
[ d.
- - 72- - - - - Z2- - - - - - - - Z2- - Z2- = = = = == - == === - - - ===
- Z2Z272- - - - - - - - - - - - z27z2- - === == 2222- - - - - - - - - - - - -
- L2- - - - - - - - - - =-=-=-=-=---=- z2 === 22- - - - - - == - - - - - -
- - - I2- - - - - - - == =-=-=--- Z2- - - - - === = m === = Z2- - - - -
- - - L2- - - - - =-=-----=-=-=-=-=- == === =-=---=- Z2- - - - 12- - - - -
Z272- - - = - - - - - - - - - - - - - - - L2- - - - - - === - - === ==
22— - = = = = === === === === - Z2722- - - - - - - - - - - - - - Z2- - -
—————————— Z2- - - - =-=-=- - - Z2- - - - - - - = - === =-=-=-172- - -
- - =-=-72- - - - 722-----=-=-=-~- - == - - 22- - - - - - == -=-=- - - -
- - - L2- - - - - - - - - - =-=-=-=-=-=- = =-=--- Z2- - Z27Z2- - - - - - - - - -
- L2- - - - - - - - - -=--=-=-=-=-=-=- - ==-=-=-=---= 2- - - - =-=-=-=-=-=--
22- - - - - === =-=- - = 2----=-=- === === === === Z2- - - - - - -
——————————— Z27272- - - - - - - - - - - === = 17Z27272- - - - - - - -
—————————— 2272- 7Z2- - - - - - - - - - === - 172722722- - - - - - - I272
————————————————————————————————————— 227272
_____________________________________ Z2__
__________________ ZQ_ - e = e e e e e e e e e e e e e = = = =
- - - Z2Z2- - - - - - - - - - - - - A e R
————————————————————————— Z2- - - - - -72- - - - - - -
————————— 2- - - - =-=-=-=-- - - Z2- - 12- - - - - - - - - - - - - - -
e f.
————————— Z323- - - - - - - - - e R
————————————— Z3723- - - - - e T
————————————— Z3- - - - - - ----=--=-=-=-=---------173Z3
—————————————————————————————————————— Z373
- - - Z3Z3Z3Z3- - Z3Z3- - - Z3Z3- - - - = — - - - - - - - - - - - - - - - - - = -
————— Z3723- - 13- - - - - - - - 17313 - - --7Z3Z3- - - - - - - - - - - - - -
————— Z3- - ----------13- - -=--73------1713------- -
—————————————————————————————— Z323- - - - - - - -
—————————— Z3- - - - - 1Z3- - - e R
————————— Z37Z3Z3- - - Z3Z3- - 73 - - - =-13-- - - - - - =-=-=-=-=----
- - -17232Z3- - - - - - - Z3- - - - - Z373 - - Z3Z3Z3- - - - - - - - - - - - - - -
- - =-73-- - - - - - Z3- - - - - - - - - - Z3Z3- - - - - - - - - - - -=-- - -
———————————————————— - - Z3Z3- - - - - - - - - - - - - - - -
—————————————— Z3723- - - - - - Z3213- - - - - - - - - - - - - - - -
- - - 13---=-=-=---- - Z3- - - - - - - =-723- - -1Z323- - - - - - - - - - -
- - Z3- - -713------=-=-=--- - 3 - === 3- - - --=-=-=--- Z373
————— 3- - - - - - =-=-=-=-=--=-- - - - ----=-=-------- - 7373-

Figure A.21: The MI input maps with respect to visual input (in the Z dimension), before (left)
and after (right) training. Z1, Z2 and 73 code the negative, middle and positive range in the 7
dimension (threshold=0.3).
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A.3 Cortical Feature Maps of Motor Control Model with Com-
bined Proprioceptive Input and Visual Input

A.3.1 Proprioceptive input maps in PI layer

a. b.

————— EE------=-=------ EE---E----EE---EE---
----EE------ E---"=-=--- === =-=-=-=-=-=-- E----E----
-E---=-=-=---- EE---E--- = === - =-=-=-=-=-=-=-=-=-=---=--
——————————— E---EE- - - e R

———————————————————— EE---EE---------E---

—————— E----------EE - E----E----EE---EE-- -

————— EE----------E-- --=-=--=-=-=---E-=-=-=-=-=----
-E------ E---EE------ === =-=-=-=-=-=-=--=-==-=-=-=--=--=
EE----- EE--EE------- EE---EE----E----E---
E-------=-=-=-=-=-=-=-=-=-=-=-- E----E----EE---EE-- -
——————————————————— E -------=---E----E----

----E--=-=-=-=-=--- EE---- = =—==-=-=-=-=-=-=-=-=-==-=-=-=-=-=---
E--EE----- E----"--=-=-=- === === === - - - - ---
E---=-=---- EE-------- E EE---EE--------- E---
———————————————————— E----E----EE---EE-- -
————————————————————————————— EE----E----
---EE---=-------- EE-- = - =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=--
E--E------- EE---E--E = - === === -=-=--=
E---=-=----=-- E------- E EE---EE--------- E---
[ d.
———————————— FF--F--- e R
———————————————————— -F----FF-----=-------+-
———————— F---=-=-=-=-=---- FF---FF----FF---FF--
-FF----FF-----=--=-=-=-- = =====-===-=- F----F---

_F ______________________________________

___________ F________ - e = e e e e e e e e e e e e e = = = =

—————— F---FF-------- -FF---FF------------
F----FF-----=-=------- -FF---FF---FF---FF--
F---=-=--=-=-=-=-=-=--=- F----F = -—=-=-=-=-=-=-=-=-=-- F----F---
_____________ FF_____ _ e, e e e e e e e e e e e e e e e = = e
_____________ F______ _ e e e e e e e e e e e e e e e = = = =
---F--=-=-=-=--=-=-=-=-=-=-=--- --F---FF--------- F - -

--FF----------- F---- -FF---FF---FF---FF- -
——————— FF-----FF---- ------=-=-=-=--F----F---
—————— FF---------FF - e R
________________ FF__ _ e e e e e e e e e e e e e e e e = = =
———————————————— F--- -FF---F-------=-=-=----+-
-F--=-=-=---- F---=-=-=---- -F---FF----FF---FF - -
FF---FF--FF----=-=-=--- = =-+--+- F----FF----F---
F---FF------- F--FF-- = —==-=-=-=-=-=-=======-=-=-=-==

Figure A.22: Tuning of PI elements to the length of the upper arm extensor (E) and flexor (F)
before (left) and after (right) training (threshold=0.2).
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——————————— BB----BB- e e
_BB _____________________________________
-B--BB-------------- --BB------=-=-=-=-=-=-=--=--
---BB-----=---=-=-=-=---- -BB----BB---B---BB - -
—————————————— B----- -------B---BB---BB--
———————— B----BB----- R
——————— BB----B----BB e T
—————————————————— B - --BB--------------8B-
————————— B----=-=-=---- --B----BB---BB---BB -
-B------ BB---------- === =-=- BB---BB----B- -
BB--BB-------------- - == - === --=-
----B---=-=--=--- BB---- = - --- - - - - - - - === ==
—————————— BB-BB----- --BB--------------8B-
—————— B---B--------- --BB---BB---B----BB -
--B--BB---------- B-- === =-=-- BB---BB-------
-BB--------=-=---- BB-- = -- === --- - - - === ==
_B ________ B _____________________________
—————— B--BB--------- --BB-------=-=-=-=-=-----
————— BB-----=-----=-=-=- -BB----B----B---BB--
———————————— B-----B- ------BB---BB---B---
[ d.
----D----=-=-=-=-=-=-=-=-- DD = - - - - - -- - -- === - - ===
—————————————— DD---- D------=-=-=-=-===-=-=-=-=-=--
————————————— DD----- p----bDb----D---DD---D
——————— D----=-=-=-=-=--=-- ----DD---DD---DD---D
—————— pD----------DD --=--D----=-=-=-=--=-=-=--=--
_________________ DD_ - e = e e e e e e e e e e e e e = = = =
___DD ___________________________________
D--D---DD----~- DD---D p----Db----D----D----
——————— DD----DD----D D---DD---DD---DD---D
____________________ ____D____D__________
——————— D--DD------~-- e
D----- DD--D------=--- === - - === - === ===
———————————————————— p---------D----D----
————————————— DD----- D---DD---DD---DD---D
--D---=-=---=--- D------ ----D----D----------
-DD---DD-------- DD-- = - ---- - =--- - -- - == - ===
-D----DD------- - D--- = - m - -- - - - - - - - - === == -
———————————————————— p---------D---DD---0D
—————————— DD-------- ----DD---DD---DD---D
----DD----D------~-- D ----D----=-=--=-=-=-=-----

Figure A.23: Tuning of PI elements to the length of the upper arm abductor (B) and adductor (D)
before (left) and after (right) training (threshold=0.2).
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_______ 0_______0____ _ e, e e e e e e e e e e e e e e e = = e
————————————————— 00 - ----=--=------00----0 -
————————————————— 00 - -------00---0----00-
-00------ 00---0----- --00---0--=----=----~--+-
-00------ 0---00----- --0--=-=----=-"=-=-=-=-=-=----
____U ___________________________________
---00----=-=-"-=--=-"=-=-=-=-=- === -----= 0---0----0--
——————— 00---0---0--- --00---00--00---00--
——————— 0---00--00-- - -00----0-----=-=---=-=-=
0--0------- 0----=-=--=- === - - - -=-=--=----
--00------=-=-=-=-=-=-=--- (1 R T 00--
—————————————————— 0 - ----=-=-------0--00---
——————— 0----0----00 - ---0---0---00-------
—————— 00---00----0-- --00--00----------0-
_____________________________________ 00_
00-------=-—-=-=-—=—=-—=-=-=-==- - === - -=-=--=--=--= 0 - -
0-----=---=-=-=-= 0----- o @@ - ==-=-=-- 00------
---0---=----- o0------ - =-=----- 00--00----- 00
--00----0----=-=-=-=-=-=-= --00---0--------+- 00 -
--0----00------ 00--- --0-----=-=-=-=-=-=-=-=-=----
[ d.
-CC-------- cc------- ----cCC---CC---------
________________ CC__ _ e e e e e e e e e e e e e e e e = = =
________________ CC__ - e = e e e e e e e e e e e e e = = = =
---C----C---=-=-=-=-=---- C--=-=--=-=-=-=-=-=-=-=-- c----
--cCC---C-----=-=-=-=-=-=-- c----¢----¢C---¢CC---2¢
—————————— cc-----¢C-- ----¢C---CC---C-----
—————————— cc---¢CC--- e T
--CC-----=-=-=-=--- C---=- - - - - - - - - - - - - - == ===
--C---CC--=--------+- ccC C---=-=-=-=-=-=-=-=-=--- c----
—————— cC------=-=----C- ¢c----¢c¢C---¢CC--CC---¢
————————————————————————— c---CC---------
_________ CC_________ _ e e e e e e e e e e e e e e e e = = =
¢c---¢----¢CC--CC----C - - -=----=--=--=-=--=-=---=--=
---CcCC-------- c----- [ cCC-----=-=-=--=-=-=-=- ceCc---
———————————————————— c¢c---¢c¢C---C---CC----
————— cc-------¢C---- -----¢C---CC---=-=-=--=--
_____ C________C_____ - e = e e e e e e e e e e e e e = = = =
__________________ CC _ e, e e e e e e e e e e e e e e e = = e
———————— c¢c--------¢- c¢c-------------CC---
--¢c¢cC---¢cC---CC------ ¢c----¢----¢C---C---¢

Figure A.24: Tuning of PI elements to the length of the lower arm extensor or operner (O) and
flexor or closer (C) before (left) and after (right) training (threshold=0.2).
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e e m e e e e e e e = - - e = = e e e e e e e e e e e e e e e e e - -
———————— ee----------= —ee---—ee--------@ge- -
———————— e - - - -=------- ee---—ee---------¢~--~-
---—ee--------- ee---- - - =-=-=-=-=-=---- ee-------

---—e----- e----—-e---—ee == === ==-=-=-- e - - ------

———————— ee--------¢- R

- —e - - - - - - - - === - - == —ee---—ee-~----~---- - -~
—ee--------- ee------ —e----—e------ e--ee - -
———————————— e - - ----- -- - - - - - - ----e---¢e---
e e e e m e e e e e e m e = - e = e e e e e e e e e e e e e e e — - -
---—ee--—ee------ -~ ee- 0 — - - - - - - === --- - - - - - ==
---—e---—ee-----------= —ee---—ee--------~- e - -

————————————— e - - - - - - —ee---—e---------¢g&¢e- -
———————————— ee------ - - - - - - - - - - - - =-=-=- ===
———————————— e-----¢ee - - - - - - - - - - - - ---=----
m e e m = m e e e e e e e e e e e e e e e e e e e e e e e e e e e = - -
—ee----—e------------= —ee---—ee--------~- e - -
—————— ee------ee~- - - - -—e---ee---------¢g¢e - -
————————————— ee-- - - - -----------@ee---e---
-—ee-----=-=-------= ee- - == =-=--=-=-=--- e - - ------

[ d.

—————— f-------f£f£---- tftf---ff---ff---£f£f---

————— ff-------f£----- -----=-=-=-=-=-f-=-=-=-=-----
_________ f__________ _ e, e e e e e e e e e e e e e e e = = e
-f------ ff----- ff--- ff----f----f----f---
ff------=-=------ ff--- ff---ff---ff---f£f---

f _______________________________________
-ff----f--=----=----=-=- - === -=-=---------
-f----f£f----- f------ -f---ff----f£---f£f---
—————— f-----ff---f-- ff---ff---ff--£f£f----
————————— f------f£f-- e e

———————— f------ff--- e e T
___________________ f _ e e e e e e e e e e e e e e e = = = =
---ff-----=--=------ ff -f----f---=------ f---
---f----f---=-=----- f - ff---ff---ff---ff---
——————— ff-------=---- -----=-=-=-=-=-f-=-=-=-=-=----
____________ f_______ _ e, e e e e e e e e e e e e e e e = = e
ff--f£f------ ff------=- == === - == - - == - -=-----
f---f------ f-------- ff----f----f----f£---

Figure A.25: Tuning of PI elements to the tension of the upper arm extensor (e) and flexor (f)
before (left) and after (right) training (threshold=0.2).
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b---=-=-=---- b--bb----- b--=---=-=-=-=--=-==-=-=-=-=-=--
————— b---bb--bb----- b---------b---bb---bD
----bb---b------- b - - ----bb---bb---b-----
____________________ ____b_______________
b----b----bb------- o T e T
----bb----b-------- b b----b----b---bb----
——————————————— b---- b---bb---bb---bb--->
———————————————————— ----b----b---------bD
b------- bb----b----b = - - === === - === === ==
b----=-=-=-=-=---- bb----b% b---=--=---- b----b----
---bb-----=-=--=-=-=----- b---bb---bb---bb--->
---b----=-=-=-=-=-=-=-=-=---- ----b----b---=-=------
———————— b-----bb---- e e T
——————— bb-----b----- R
—————————————————— b - b---------b---bb---b
————————————————— bb- ----bb---bb---b----b
-b--=-=-=-=-=-=-=-=--=---- b- - ---=-b----b-=-=-=-=-=-----
[ d.
______ dd____________ _ e, e e e e e e e e e e e e e e e = = e
-dd------ d------=-=-=-=- === === -=-------
-dd----- dd------- d - - --dd-----=-=--=-=----- d -
-d------ d------- dd- - --d----dd---dd4d---44 -
——————————————————————————— dd---4d----4--
____d ___________________________________
---dd----ddd-------- = === === === --=-=-----
———————— ddd--------- ---4d------=----=----4d-
———————————————————— --dd---dd---4dd---dd -
——————————————— dd--- -------4d4d---4dd4---4- -
--=-d------- dd--4d---- - === === --=-=----=------
--dd--d----4----- dd- 00— - - - - - == - ==
————— dd----------d-- ------=-=-=-=-=-=-=-=--=---4d -
————— d------d------- --dd---dd---4d4d---44d -
——————— d---dd------- --d----d----d4-------
______ dd____________ _ e e e e e e e e e e e e e e e e = = =
______________ d____d - e = e e e e e e e e e e e e e = = = =
--dd--------- dd---4d --dd------=-=---=-=-=----
—————————————————— d - --d----dd4d---4d4d---44d -
——————— d-----=-=-=---=-- ----=---4d4---4----4--

Figure A.26: Tuning of PI elements to the tension of the upper arm abductor (b) and adductor (d)
before (left) and after (right) training (threshold=0.2).
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a. b.

————— oo0o---------00-- ----00---00---------
____________________ e e e g m = e e e e e e m e = -
00— ~-—-—-—=—-—-—-—=----=-=---=-=- - === ---- === ==~
0 - - - - - - - - =-=--=------- o 0 - - - - - - - - =-=-=-=-=-=--=----
—————— oo0--00--00--- - 0o----0----00--00---0
--—0o---0---—0---0----- ----9%00---00---0----0
m 0 0 == = m e e e e e e e e e e e e e e e e e e e e e e e = - -
0 m m e e e e e e e e e e e e e e e e e e e e e e e e e e - -
——————————————— oo - - - - 0o--------------9---
----0----=----- oo - - - - coo0o----0----0---00---
---00------- o----o0o-- === =- oo0o---00-------~-
o----- oo - -------= co0o-0 0 —- === === === === - -
————— coo0o---------0--0 e e T
____________________ m g m mm e e e e e e e e m e == -
———————— o--00------~- coo0o----0---00---00- - -
o------ co--0------~- o - =-=--- coo0o--00-~-~------~-
___________________ ° D L L D D L o D222
m 00 == = m e e e e e e e e e e e e = e e e e e e e e e e = - -
0o - - -=-=-=-=-=-=--- oo ----- 00 - - - - --=--=--=----= o - - -
—————— co-----0------ o----—o0o----0----00---
[ d.
—————————— cc----¢- - - e e
--cc¢c------ c-----=-=--=- == === =-=-- c---c¢c¢c------
- -—ccCc- - ---=-=--=-=-=------ ---¢---¢c¢c---¢c----¢--
———————————————————— - - ¢cc---¢c---------¢--
_________________ c - - e m e e e e e e e e m - - -
————— cc----¢cc---c¢cc¢c- - R e
cc---¢c----- c----=-=--- - ==--=---- c---¢----c¢cc -
C - - - - =-=-=-=-=-=-=--=-=-=-=---- --¢c----¢c¢c--¢c¢c----¢--
———————————————————— - cc----¢c---------=-=--=
______ CCmm === - - - - el D L D D D . o -2
—————— c-----¢cc--¢c--- - - - - - - - - - - - - - - =-=-Cc---
cec------ cc--¢c---¢c--- = === ===-=----- c--cc¢c---
c---=---- c-=--=-=-=-=---- c --¢c¢c---¢c---¢cc¢c-------
———————————————————— --¢c---¢cc--------=--=--=
_____________________________________ cc -
---¢---¢c¢c-cc--c¢cc---- = - === === --=-----=-- c - -
--cc---¢c----- cc----- = === =-=-=-=-=---- cec------
- -—Cc - - - -----=-=-=-=-=-=-=-=-=- - === =--- cc--c¢c----- c -
———————— cC----=-=------ --¢c¢c---¢c---------¢c¢c-
——————— cc-------¢cc- - i T R T

Figure A.27: Tuning of PI elements to the tension of the lower arm extensor or operner (o) and
flexor or closer (c) before (left) and after (right) training (threshold=0.2).
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A.3.2 Proprioceptive input maps in MI layer

a b.
——————————————— EE-- - --EE------EE--------
-EE----- EE---------- --E------- EE--------
EE------ E----"=-=-=-=-=-=-=- === === === === ---
-~ EE----=--------- EE- = - - =-=-=-=-=-=-=--=-=-==-=-=-=-=-=--
-EE----- EE------ EE - - ---E--=-=-=-=-=-=-=-=-=-- EE- -
———————— E--EE------- --EE---EE--E----EE - -
——————————— E----=---- --E---EE--EE--------
_________________ E__ _ e e e e e e e e e e e e e e e e = = =
----E--=-=-=-=-=-=-=-=-- EE-- = - =-=-=-=-=-=-=-=-=-=-=-- E------
--EEEE------- E---=--- == ==-=-=-=-=-=-=-=-=-- EE------
-EE-E----EE-EE------ ----EE------ E-------
————————— E-------=-=-- ---EE-----------EE- -
————————————————— EE - ------=--=-=-------EE - -
____________ E_______ _ e, e e e e e e e e e e e e e e e = = e
E---=-=-=-=-=--- EE------ E = - ----=-=-=-=-=-=-=-=-=-=-=-=-=-=--
E---"-"---=-=-=-=-=-=-=-=-=-=-- E --EE----EE----------
----EE-------=-=---=-=-- -EE----- EE----------
----E---EE------=-=-=-=- = === === =-=-=--= E - -
———————— E-----EEE-- - ---E------------EE- -
c. d.
--F---FF-------- F--- F----- FF-------=--=--=- F
—————— F--F---------- ------F-----------FF
————————— F---=-=-=-=---- -------FF----FF-----
———————— FF--FF------ -------F-----FF-----
----F----F------- F - - F---=-=-=-=-=-=-=--- F----- F
---FF-------=-=-=-=-- F- - F---=-=-=--=-=-=-=-=-=-=-=-=-=-- F
___________________ F _ e, e e e e e e e e e e e e e e e = = e
____________ F______F - e e e e = e e e e e e e e e = = = =
----FF--F--FF---=-=--- = ===-+--+- FF-------=-=-=-=-=--
——————————— F----FF-- F---FFF---FF---F----
—————— F---F----FF--- F---------F----F---F
F----F----F-------- F - === =-=-=-=-=-=-=-=-==-=-=-=-=-- F
—————————— F-------FF e T
__________ F_________ ____________F_______
————————————————————————— FF----FF-------
F---=-=-=--=-=-=-==-=-=-=-=-=-- F - =---- F---=-=-=-=-=-=-=-=-=-=--
————— F-------FF----F -------=-=-=------FFF- -
---FF--------- FF--F- = - =—=-==-=-==-=-=-==-=-=-- FF---
---FF--------- F--F-- = - ==-==-==-=-=-=-====-===-=-=--
---F-=-=-=-=-=-=-=-=-=-=-- FF-- F----- FFF-----------

Figure A.28: Tuning of MI elements to the length of the upper arm extensor (E) and flexor (F)
before (left) and after (right) training (threshold=0.4).
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——————— BB------BB--- -B--------=-=------B--
——————— BB----------- BB--------------BB- -
________ B___________ - e = e e e e e e e e e e e e e = = = =
__B _________________ ___B ________________
-BB-------- B----- BB - --BB----- BB---------
-BB-----------=-=-=-=-=-=- - ==---- BBBBB---------
——————————— B-------- ------B-------BB----
—————————— BB-------- ----=-=-=----=----B-----
_____ B_____B________ _ e e e e e e e e e e e e e e e e = = =
----BB------- BB----- = - - == - - - - - === === - BB
————— B---=--=-=-=-=-=-=-=--- -----------B-----BB-
----BB--------=-----=- === === === B----=-=----
-B-------- B------ B-- = - - - - - - - - - - - - - - ===
BB-------- B------=-=-=- | == === - === === === - - ==
B---=-=----- B---=------ BBB----- BB------ B---
B------ B---BBB----- B BBBB----BB----- BB-- -
—————— BB----BB------ -------BB------=---=--
__BB ____________________________________
--B------=-"=-"=-"=-=-"=-=-=-=-=-=- - === === = - - BB-------
——————————————— BB-- - ----------BB--------
[ d.
——————————————— DD-- - ------=-------DD-----
_________ D__________ _____________D______
————————— D-------D- - ------D---=-=-=-=-=-=-=--=--
-DD------- D----- pp-- === -- DD--------- DD - -
-DDD------------ D--- ----DD---------- D---
___DD ___________________________________
---D------- D------=-- === ==-=-- DD--DD------
—————————— D------D- - --------DD--D----D - -
———————————————— D--- -bD-------------DD - -
---DD-----=-=----=-=---- -DD------=-=----=-=-=-=---
----DD------ DD------ - ===-=-- D-----=-=-=----
————————— DDD-----DD - -------DD---------=--
———————————————————— ---DD--D-----DD-----
———————————————————— ---bD---------DD-----
———————————— DD------ ------------DD------
----D------- D------ ) e T R R
---DD---------=-=---- D -=-=-=-- DD-----=--------
———————— D-----=-=-=---- p---DD-------------1D
——————— DD-------D--- -----=----=-----D----D

Figure A.29: Tuning of MI elements to the length of the upper arm abductor (B) and adductor
(D) before (left) and after (right) training (threshold=0.4).
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a. b.

----0----00----00--- = ----=-=---=-=-=-=-=-- 0----
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———————————————————— 0---0-----0-------00
———————————— 0-----0- ----0-----=-=---=-=-----
—————— 00---0-----0-- R
______ U_____________ __________0_________
-0---=---=-=-=-=--=-=------ --00----000---------+-
———————————————— 00 - - --0------0---=-=-=-=--=--
[ d.
————————— c----¢CCC-- - ---=-=-=-=-=-=-(0C----------
——————— ccC-------=-=-= ----¢CC--CC----=------
----C---C-=-=-=-=-=-=-=---- ---CC---=-=-=-=-=-=-=-=-=--=--
C-=-=--=--=-—=-=-=-=-=-=-=-=-=-=-- [ e T
————————— cC--------0C6- ---=-=-=---=-=-=--=-----0¢¢C -
-C---=-=-=-=-=-=--- cC------ - === =-=-=-=-=--- cc---¢CC -
C--=--=-=-=-=-=--=-- cC----- c - =-=-=---- c---¢cC----CC -
——————————— cc------2¢ ------CcCC------=---0¢6--
__________ C_________ __C_________________
——————————————— ceCc--- -CC---=--=-=-=-—=-=--=-=-=--=--
--CC-----=-=-=-=-- cc---- - -=-=--=-=-=----- cC-------
--¢cc-CcCC----- cC------- ----CcC------ cC----- cCC -
————— c-----¢C-----C-- ----=-=-=--=-=-=----0¢6--06--
———————————————— cC- - ----=----¢C----C¢CC-----
___________________________ C____________
—————————————————— ccC ------CcC---CC----=-=-=--
---CcC------ cC------- ----¢CC----C------- ccC
--CcCC------- cc------- -C---=-=-=-=-=-=--- cc---¢c¢C
——————————— C-------- c¢c-----------¢6C-----
_______________ C____ - e = e e e e e e e e e e e e e = = = =

Figure A.30: Tuning of MI elements to the length of the lower arm extensor or operner (O) and
flexor or closer (C) before (left) and after (right) training (threshold=0.4).
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—————— ee-------ee-~- - - e-----—eee----------4¢
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—e - - - - - - - =-=-=-=----= e - - - e - - - - - - - - =-=-=-=-=--=---- e
e - - - -=------ e - ------ [ T T e
—————————— ee-------¢ e
——————— e - - - - -=-----=--= -----ee------=-=--=----=
—————— e - - - - =-=-=--=----- e---—eee----—e-~------~-
—e - - - ----=------ e - - - - e---—ee----—ee---—ee--¢
ee - - - - - - - -------=--=-=- - === =--=-=--- e - - --e---¢e
- -—-—ee----—ee-------=-- == === -=- - - === --=-------
--—ee----- e - - - - - L e
—————————————— ee - - - - -----ee----—e--------
e - - - - - - - - =-=--=-=-=-=---- e - - === e----—ee-~------ -
----—e------- e - - ---- e - - - - -- === === eee - -
---—e------- ee------- - === === --=------= ee - - -
___________ 6 - - == == - = D D L D D D o D -2
——————— e - -------@e--- e - - - ---—@e-----=-=------=

[ d.

————————— ff------f-- --ff------ff--------

---f----- f------ ff-- --f------- ff--------

___f ____________________________________
---f-=--=-=-=-=-=-=-=---- o e e R R T T T
——————————— ff----f-- ---f-----=-=---=-=--6#f--
—————————— ftff------- --ff---ff--f£----f£f--
——————————— ff------1 --f---ff--ff--------

_________________ ff_ _ e e e e e e e e e e e e e e e e = = =
———————————————— ff-- - --- - - =-=-=-=-=-f--=----
----f-=----=-"=-"=--=-"=-=-=-=-=- === - -=----- ff------
f-ffff------=-=------ f ----ff------ f-------
——————— ftff--------ff ---ff-----=------f°f--
———————— f---=---=-=---- --- - ----=-=-=-=-=-=-=-=-ff--
———————————— ftff----- e e
_____________ f______ _ e e e e e e e e e e e e e e e e = = =
——————————————————— f --ff----ff---=-=------
---=-f-=--=-=-=-=-=--=-=---- f -ff----- ff----------
----f---ff----- f---- - - - -=- - - - === - === - f--
———————— f-----f£----- ---f-----=-=---=-=--6#f--

Figure A.31: Tuning of MI elements to the tension of the upper arm extensor (e) and flexor (f)
before (left) and after (right) training (threshold=0.4).
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——————— b----------5b- -----=-=----=-=--bb-----
————————————————— bb- ---=-=--=--=-=-=-=--b-=-----
-bb----- b-----=-=-=-=-=-=- " == === b---=-=-=-=-=-=-=--=--
bbb----- b---"---=-=-=-=-- " - ===~ bb--------- bb- -
—————————— b-------5bb -----b----------b---
---b----- bb-----=---- - == === - - - - - === === - ==
--bb--------- b-----=- - - - - == - - - - - - - == ===
———————————— b------- --=--=-=-=--bb--bb------
———————————————————————————— b---b----b--
——————— b----=-=-=-=-=---- -bb-------------Dbb--
---bb------=--=-=-=----- -bb------=-=-=-=-=-=-=-----
---b----=-=-=-=-=---- bb-- === =-=-=-- bb----------
—————————— bb---bb--- -------bb-----=-=-=----
—————————— b---=--=---- ---bb--b-----bb-----
b---=-=-=-=-=--- bb------- ---b-=-=--=-=---- bb-----
b----=-=-=---- bb------ b - - - == bb------
____b ___________________________ b _______
---bb----=-=-=-=-=-=-=----- b----bb-----=--------
—————————————— bb---- b---bb-------------5%
——————— bb-----b----- ----=-=---=-=-=--=--b----b
[ d.
————————— dd------4d4-- -d--------=-------44 -
————————— d------=-=--- dd--------------d44d - -
____d___d _______________________________
d---4d---d------=--=-- d ---d------=-=---=-=-=----
————————— dd-------4d- --dd-----dd---------
————————————————— d - - ------ddddd---------
d----=--=-=-=-=--=-- d----- - =-=--- dd--d4d----44----
———————————— dd-----4d ----=-=-=-=-=--=---44d4-----
____dd __________________________________
----d----d----=--=-=-=-=- = === == - - =-=---=---- dd
-d------ dd--------=-=- === -=------ dd -
----4----4----dd---- - === - -=-=---=-=----=-----
---4d4----- dd---dd---- = - - - =-=-=--==-=----=-----=-=
d-----=-=-=-=-=-=--- d----- === - - - - - - - == - === ===
——————————————————— d -dd-----dd-----d4d- - -
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__d ________________________ d ____________
---d4----- dd-------- - === - -=-=---=-------
---d44----- dd--dd---- = —-=--=--=-=---=-- dd-------
—————————— d---4----- ----=-=-=-=-=--d4--------

Figure A.32: Tuning of MI elements to the tension of the upper arm abductor (b) and adductor
(d) before (left) and after (right) training (threshold=0.4).
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----9%00---—0---------- --—0o--=---- o---00--00 -
----0----—0-------=-=-=- - === -=-=-----=-- o------
[ d.
___________________________________ c - == -
——————— cc---=---=-=-=-=-- ----=------=----¢cc----
———————————————— c-- - - ¢c-------¢----¢cc¢c----
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---c¢c----- c----=-=-=-=-=-=- == -=-=---- c-=--=--=-=-----=
- -—ccCc------=---=-=-=----- T T
____________________ CCm == = = = e e e e e e m e e = -
—————————— ccc---cc- - C—- - - - = =-=-=-=-=-=---=------
—————————— cc----c¢cc- - ----------¢---¢ccc¢c---
- -—cc--------=-=-=-=-=--=-=- - -=-=---- cccc---¢cc---~-
e m e e e e e e e e e e e = e e e o - Cmm == m o m e — - - -
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---¢c¢c----¢cccc----¢cc-  mm-- - =-- - - === --=-------
———————— cc--¢c----¢- - c---------¢c¢c------c¢cc
——————— c----¢c-----=-- ----¢-----¢-------c¢c
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Figure A.33: Tuning of MI elements to the tension of the lower arm extensor or operner (o) and
flexor or closer (c) before (left) and after (right) training (threshold=0.4).
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A.3.3 Motor output maps in MI layer

a. b.
----E----E---E------ E----EEEE---------- E
-EEE--E------- E----E - ---- EEEE---------- E
_____________ E______ - e = e e e e e e e e e e e e e = = = =
———————— E----E------ ------------EEE-----
-E----EEE-------- E - - E---=-=---=-=-=-- EEE----E
————————— E------E--- E-----------EE----EE
--EE------- E---E--E- - --=-=---=-=-=-=-- E----- EE
————— E---EE---E-E--- T
_________________________ EE_____________
---E---=---- E-E------ E---EEE----E----E---
———————— EE---------- E---EE----EE---EE--E
-E-E------ E-E---"---- = =-—==-==-=-=-=-=-- E----E--EE
-EE----E----E----- EE - =--=-=-=-=-==-=-=-=-=-=-=-=-=-=-=--=-
——————— E------E---E - e R
————— EE------=-=------ -----EE---EE--------
E--E---E----E--E---E = ----- EE---EE--------
—————— E---=-=--=-=-=-=-=-=-- ----------E----EEE - -
-E--E---E------=-=-=-=-- = === -=-=--=-- EEEE - -
———————— E-E---E----E T
----E--=-=-=-=---- E----E EE----- EE-----------
[ d.
——————————— F---=-=---- --FF------FF----F---
--F--=-=-=-=-=-=-=-=-=-=-=-- F - - --FF----- FFF--------
______________________________ F_________
__F _____________ F___ ____________________
_______________ F_F__ - e e e e = e e e e e e e e e = = = =
———————— F-------FF- - --FF------------FF - -
——————————— FF------- --FF---FF-FF----FF- -
-F--=-=-=-=-=-=-=-=-=-=-=-=-=-=--- -FF---FF--FF--------
-F--=-=-=-=-=-=-=-=-=-=-- F---F = —-—=-=-=-=-=-=-=-=-=-=-=-- F------
________________________________ FF______
——————— F-FF--F--F--- ---=---=-=-=-=---FF------
--F---=-=-=-=--=-=-==-=-=-=--- ---FFF----- FF--FF---
—————————————— F-F-F- ---FF----------FFF - -
F-F------=---=-=-=-=- F--- ---F--=-=-=-=-=-=-=-=-=-- FFF -
F---F---F--F--=-=----- === ========-== FF--
——————————— F----F--- ---F---=-=-=--=-=-=-=-=-=----
F--F------- F-------- --FF----FFF---------
———————————————— F--- -FF-----FF----------
--FF------- F-F------ = =—======-=======-=-=-- FF -
F--F-----=-=-=-=-=-=-=-=-- F - ---F--=-=-=-=-=-=-=-=-=-- FF--

Figure A.34: MI output map before (left) and after (right) training for upper arm extensor (E)
and flexor (F) (threshold=0.4).
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Figure A.35: MI output map before (left) and after (right) training for upper arm abductor (B)
and adductor (D) (threshold=0.4).
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a. b.
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Figure A.36: MI output map before (left) and after (right) training for lower arm extensor or opener

(O) and flexor or closer (C) (threshold=0.4).
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A.3.4 Visual input

maps in MI layer

a. b.
———————————— Xt- - =-=---- - - X1X1- - - - - - X1¥{t- - - - - - - -
---X1{t-----=-----=-=-=-=-=- == === =---- = X1X1- - - - - - - -
______ Xl_____________ - e = e e e e e e e e e e e e e = = = =
————— X1X1- - - - - - X1X1- - - - - e R
X1- - -Xt- - ---- - - Xt- - -=-=-- - - - - - - - - - - - - - - == ===
- - - X1X1- - - - X1¥{t- - - - - - - - - ---Xl---=-=-=-=-=-=-=-=-- X1X1- -
————————— - - --=-=-=-=-=-- - - X1X1- - - X1X1- X1X1- - - Xi1X1- - -
——————————————————————————— X1- - X1- - -------
————————————————— X1X1- e R
———————— X1X1- - - X1X1- - - - - --=-=-=-=-=-=-----X1X1- - - - - -
- - - X1Xx1- - - X1- - - ¥txg¢- - ---- - == === - - = - - - X1X1- - - - - -
—————————————————— X1- ----Xl--=-=-=-=-=-=-=-=-=-=-=--=-
————————————————— X1X1- ---X1Xt1------------Xi- -
———————————————————————————————————— X1X1- -
————————— - - -=-=-=-=-=-=-- ---=-=-=-=-=--X1--=-=-=-=-=--- -
————————— - - -=-=-=--=--- - X1X1- - - - - X1X1- - - - - - - - - -
X1X1- X1X1X1- - - - = = = = = - - - - - - Xt------ - - -=-=-=-=-=--=--
X1X1- Xt- - - - - - - =-=-=-=-=--- - ) & R R T X1- -
——————————————— X1- - - - ---Xt----=-=-------XiX1- -
c. d.
—————— X2X2- - - X2X2- - X2- - - - X2- - - - -X2X2-----------X2
—————— X2- - - - - - - X2X2- - X2X2 - - ----X2X2-----------X2
--X2---=-=-=-=-=--=-- 2--=-=-- === === X2- - =-=-=--=-=--=--
-X2X2------=----=-=-=-=-=-=-=- = === === --- - = X2- - ----
———————————————————— X2--=-=-=--=-=----X2X2- - - - - -
———————————————— X2- - - X2--=-=-=-=-=-=-=-=-=-=-=-=-----X2
————— X2X2- - - - - - - - X2X2- - - e
----X2k2------=-=-=-=-=-=-=-=- =D === == - === === =-=-=-=-=---=
X2- - =----- X2X2X2- - - - - - - - X2 - =--- X2X2- - - - -=-=-=-=-=-=---
————————————— X2X2- - - X2X2 X2- - - X2X2X2- - - - X2- - - - - - - -
———————————— X2X2- - - - - - X2- - - - - - - - - X2X2- - - X2X2- - X2
---X2X2--------=-=-=-=-=-=-=- = === =-=----= X2--=------ X2
---X2--X2------=--=-=-=-=-=- = === === - === -=---
————— X2X2- - - - - - - - - X2- - - e R
—————————— X2X2- - - X2- - - - - - ---X2X2----X2--------
- X2X2- - - - - - - X2x2------=-- == --- X2- - - - X2X2- - - - - - - -
X2X2X2- - - - - - =--=-=-=-=-=-=-=-=-= === - - - - === =-=-=---= X2X2X2- -
——————————————————————————————————— X2X2- - -
----X2X2---------=-=-=-=-=- = = = === - === === =-=-=--=--=-
———————————— X2X2- - - - - - X2------X2--=-"=-=-=-=-=-=-=---
e. f.
———————— X3- - -=-=-=-=-=-=-=-- X3- - - - - X3x3-----------X3
---X3---X3---"---=-"=-"=-=-=-=- == ----=- 3- - =-=-=-=-=-=-=-=-- X3X3
- - X3- - -X3X3- - - - ----- - X3- - - - s s s s - - s = - == === X3-
-X3---=-=-=-=-=--- X3X3- - - X3x3- = - - - - - === === == X3- - - - - -
—————————— X3X3- X3X3- - - - - X3- - - --------X3X3X3- - - - -
————————— X3X3- - - - - - - - - X3----=--------X3-----X3
——————————————————————————————————————— X3
___X3 ____________________________________
X3- - X3-----=-=-=-=-=--- X3--%x3 = -=---- 3- - =-=-=-=-=-=-=-=-=-=---
—————————————————— X3X3 - - --X3%3------=-=-=-=-=----
—————— X3- - - - - X3X3- - - - - - X3- - - - - - - - - X3X3- - - X3X3- - X3
—————— X3- - - --X3------- -----=-----X3----X3---X3
—————————————————— X3X3 e T
- =-=-X3---=-=-=-=-=-=-=-=-=--- X3- - - - - s - s s - - - = - - - === =
- - X3--=-=-=-=--- 3--=-=-=-=-=-- === =-- X3X3- - - - X3-- - - - - - -
——————— X3X3- - X3- - - - - - - - - - ---X3----X3X3--------
--X¥3----X3-----=-"=-=-"==-=-=- | === === === =-=---=- X3X3- - -
X3X3X3- - - - - - - - - - X3- - - - - 3. 0 - mmmmm-- === X3X3- - -
———————————— X3- - - - - X3- T
——————————— X3- - -=-=---- --=-=-=-=-=-X3-----=-=-=-=----

Figure A.37: The MI input maps with respect to visual input (in the X dimension), before (left)
code the negative, middle and positive range in the X

and after (right) training. X1, X2 and X3
dimension (threshold=0.3).
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a. b.
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Figure A.38: The MI input maps with respect to visual input (in the Y dimension), before (left)
and after (right) training. Y1, Y2 and Y3 code the negative, middle and positive range in the Y
dimension (threshold=0.3).
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Figure A.39: The MI input maps with respect to visual input (in the Z dimension), before (left)
and after (right) training. Z1, Z2 and 73 code the negative, middle and positive range in the 7
dimension (threshold=0.3).
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Appendix B

Lesioning the Motor Control Model

In this appendix I briefly summarize the results of some simulations examining the effects of sudden,
focal lesions of varying sizes to the cortex regions of the motor control model (“simulated ischemic
strokes”). This summary is included here to illustrate an application of the model developed in this
dissertation work, specifically to study questions about how the brain might recover following an
ischemic stroke. The work described in this appendix was done in collaboration with my colleagues
in our research group. A more complete description can be found in [Goodall et al., 1997].

Two sets of simulations were done in which an area of focal damage was suddenly imposed
upon a previously trained network. The first set involved lesions in PI, the second lesions in MI.
In both cases, a focal lesion was simulated by clamping the activation levels of a contiguous set
of “lesioned” cortical elements permanently at zero. In addition, connections to and from lesioned
cortical elements were severed.

The effect of each lesion on the existing proprioceptive and motor maps in the trained, intact
cortex was examined twice: immediately after the lesion, and after continually training the network
with 2000 additional random input stimuli in MI. An analysis of changes in the position of the model
arm following cortical stimuli was also made both immediately post-lesion and after further training.
All lesion effects were compared with the pre-lesion network as well as with a control network.
The control network was an exact copy of the intact pre-lesion network made immediately before
lesioning. Training was continued with this unlesioned control model, with additional random input
stimuli, so that any map alterations due to continued training alone could be compared to those
due to lesioning plus continued training.

B.1 Unlesioned Model

Fig. B.1la shows the model arm in four of six test positions, for the intact pre-lesion model,
corresponding to “requests” to contract the upper arm extensor, upper arm flexor, upper arm
abductor and upper arm adductor. As seen in Fig. B.la, the four arm positions corresponding to
these motor cortex stimuli are in the anticipated directions and are virtually indistinguishable for
the trained prelesion model (dotted lines) and the further trained control model (hatched lines).
The stability of both cortical maps and arm positioning in response to cortical stimuli in the control
model indicate that changes seen in the lesioning simulations described below are caused by the
lesions themselves.

141



0.5+

-0.54

-1
-1

Figure B.1: (a) Position assumed by the model arm at rest in the absence of external stimuli (R;
thick solid line) and in response to four of six cortical test stimuli. The arm is on the right side of
the body and is viewed from the back (S = right shoulder; small circles = hand positions). Each
test stimulus provides external input to cortical elements in MI that are most strongly connected
to a specific muscle group (here upper arm extensor E, flexor F, abductor B and adductor D).
For example, activating upper arm abductor elements in MI elevates the arm to position B. The
positions assumed by the arm in response to cortical stimuli are appropriate and indistinguishable
for the trained prelesion (dotted lines) and control (cross hatching) states of the model. Similar
results are found for the lower arm flexor and extensor (not shown). (b) Arm positions for an
8x8 focal lesion of PI shown pre-lesion (dotted line; largely obscured by overlapping solid lines),
immediately post-lesion (dashed line) and after 2000 further random input stimuli in MI (solid
line). (c¢) Arm positions for a 16x16 lesion of MI, pre-lesion (dotted line), immediately post-lesion
(dashed line), and after 2000 further random input stimuli in motor cortex layer MI (solid line).
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B.2 Focal Lesions in Proprioceptive Cortex

The effects of structural lesions in PI were examined under a variety of conditions. Changes to
the feature maps in PI were observable immediately after a structural lesion occurred in this layer,
as the first phase of a two-phase reorganization process. Following the primary structural lesion
in PI, the activity of surrounding elements was decreased, forming a secondary functional lesion.
For example, Fig. B.2a shows a perilesion zone of relatively inactive cortical elements (marked by
“~7s) seen immediately following an 8x8 focal lesion; these elements do not respond to the stretch
of any of the muscles above a threshold of 0.4.

a. b.
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Figure B.2: Muscle stretch map of proprioceptive cortex layer PI (above threshold 0.4) for an
8x8 focal lesion of PI (a) immediately post-lesion, and (b) following 2000 further random input
stimuli in motor cortex layer MI. Asterisks indicate the imposed structural lesion, adjacent “-”s
the functional perilesion deficit. A partial but less pronounced “ring” of poorly responsive units
is evident at a distance 6 from the lesion (outer border of (b)). This is not an “edge effect”; its
genuine presence was verified with a larger cortical region.

The second phase of reorganization occurred more slowly with continued synaptic changes
during the post-lesion period. With time, as the map reorganized in the context of continued
proprioceptive input and synaptic changes, the functional lesion gradually enlarged. For example,
with an 8x8 structural lesion there was a 77% increase in perilesion inactivity at distances 1 and
2 from the lesion edge over the long term (see Fig. B.2b, in comparison with Fig. B.2a). Similar
changes were observed with the proprioceptive map of muscle tension. Over time, clusters of
elements responsive to the stretch of a particular muscle also shifted position in the feature map.

The functional lesion effects described above occurred largely independently of structural lesion
size in PI. They are representative of the effects observed with lesions that varied incrementally in
size from 2x2 to 8x8. The dynamics of these functional lesions can be analyzed further by examining
the mean activation level of cortical elements, averaged over all of the test input patterns. There was
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an essentially uniform pre-lesion mean activation of the PI elements of roughly 0.12. Immediately
following the structural lesion, the mean activation level of cortical elements directly adjacent
to the lesion site dropped to 0.08, about 70% of its pre-lesion value. With additional synaptic
modifications following the lesion, these perilesion effects in the PI layer were intensified (about
25% of prelesion value) and shifted outwards.

Further examination of the model, following lesions in PI, reveals that perilesion cortical ele-
ments were activated essentially the same amount for all input stimuli, in contrast with the prele-
sion cortex where elements were activated selectively for some specific input stimuli but not others.
This uniformity occurred as the result of the loss of excitatory support from cortical elements in
the structural lesion via intracortical connections. As the map reorganized following the lesion, the
weights to these perilesion cortical elements tended to become uniform.

Immediately following the larger structural lesions (5x5 and larger) in PI, an irregularly shaped
area of inactive motor cortex elements appeared in the center of the sensory maps of the MI layer,
and did not resolve with further training. Given the coarsely topographic projections from PI to
MI (projections from PI to MI elements within a radius 4), the observed inactive zone in the center
of the motor cortex sensory map is expected, and can be viewed as an example of diaschisis. In
addition to these effects on the sensory maps of the MI layer, larger PI lesions produced a central
region in the motor output map that did not activate any muscle groups in the lower motor neuron
layer. This was due to the loss of excitatory input to this region from the corresponding lesioned
area in PI. The percentage of MI elements activating one or more muscle group(s) in the motor
output maps was 77% prior to lesioning. This decreased with larger PI lesions (5x5 and larger),
e.g., with an 8x8 PI lesion, the percentage dropped to 68% over time.

The decrease in motor output map responsiveness with lesions of increasing size led to “weak-
ness” of the model arm following a lesion in PI. Fig. B.1b shows the arm position for the same
four test inputs to MI as in Fig. B.la, for an 8x8 focal lesion in PI. Immediately post-lesion, a
measurable shift was observed in arm positions away from their pre-lesion position and towards
the neutral, resting position of the arm. For example, the elbow position immediately post-lesion
for the upper arm flexor test was 20° away from its pre-lesion position, revealing a weakened flexor
response. Similar weakened responses were seen with the contraction tests of the abductor, ad-
ductor and lower arm flexor immediately post-lesion. This occurred due to functional loss of MI
elements that activated each muscle group. However, over time with continued cortical plasticity,
the arm positions for all test inputs realigned with their pre-lesion positions, representing essentially
complete “recovery”. With larger PI lesions, e.g., 16 x 16, such recovery was incomplete.

Focal Lesions in Motor Cortex

A separate set of simulations was performed to study reorganization of the MI cortical maps
following focal structural lesions of varying sizes in MI (2x2 to 8x8). For sufficiently large lesions,
reorganization after a structural lesion in MI was seen in both the MI sensory and motor output
maps. Immediately after such large focal lesions to MI, both the stretch and tension sensory maps
for MI adjusted so that there was an increase in the number of responsive elements in normal
cortex near the lesion edge. In contrast to PI lesions, no perilesion zone of decreased activation was
present, as can be seen in Fig. B.3a. At distances 1 and 2 from the lesion edge there was an increase
in the number of responsive elements over pre-lesion levels, from 91% pre-lesion to 96% immediately
after this 8x8 lesion. Although the change in absolute numbers of responsive elements is small, it
accurately reflects a substantial increase in mean activation levels of all elements averaged over all
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inputs in this perilesion zone (from 0.14 before lesion to 0.21 after). Over time, the distance 1 and
2 responsiveness stabilized at 99%, as is seen in Fig. B.3b. Overall rates of responsiveness for the
MI sensory maps increased slightly immediately following the onset of the lesion, but then dropped
back to prelesion levels with continued post-lesion synaptic modifications.

a. b.
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Figure B.3: Muscle stretch map of motor cortex layer following an 8x8 lesion in MI (a) immediately
post-lesion, and (b) after 2000 further input stimuli in MI.

This post-lesion reorganization result is similar to results of prior studies of structural lesions
to cortical layers with topographically-ordered somatosensory inputs [Armentrout et al., 1994]. In
this context, it is important to note that the topographically-ordered connections between PI and
MI in this current model are similar to those between thalamus and sensory cortex in the earlier
model (projections from PI to corresponding MI elements are made within a radius 4).

Like the MI sensory maps described above, the MI output map in residual intact cortex expe-
rienced an increase in relative activity. The number of MI elements activating one or more muscle
group(s) increased following a MI lesion of sufficient size (4x4 and larger). For an 8x8 lesion, the
percentage of remaining MI elements activating one or more muscle group(s) increased from 77%
to 86% of intact elements. This affected the positioning of the model arm as well, when tested
with six external inputs to MI. As seen in Figure B.1lc, with a 16x16 focal lesion in MI the arm
position revealed a weakened response immediately post-lesion. For example, the elbow position
immediately post-lesion for the upper arm flexor test was 15° away from its pre-lesion position,
roughly in the direction of the resting position. Further post-lesion synaptic modifications in the
presence of the MI lesion did not produce a complete realignment of the arm positions with their
pre-lesion location, although complete recovery did occur with smaller MI lesions (e.g., 8x8).

The lack of any significant post-lesion reorganization with small MI lesions (2x2 and 3x3) can be
attributed to the coarseness of the topographic projections from PI to MI. Each MI element receives
input from 61 PI elements, so with such small MI lesions the distribution of output from PI elements
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was only minimally perturbed, and perilesion elements continued to experience a distribution of
input patterns similar to that before lesioning. As a result their receptive fields, and thus the MI
map, remained largely unchanged due to the correlational nature of the synaptic modification rule.

Examination of the feature maps for PI (both post-lesion and with further training) did not
reveal any qualitative reorganization following MI lesions, beyond the small shifts of cluster positions
expected with this model [Chen & Reggia, 1996]. While motor output was weakened with larger
MI lesions, it did not appear to affect feature map organization in PI.

B.3 Comments

This model demonstrates interesting post-lesion effects concerning cortical map reorganization,
along with some insight into why these secondary effects arise. It was observed that focal lesions
resulted in a two-phase map reorganization process in the intact perilesion cortical region. The
first, very rapid phase was due to changes in activation dynamics, while the second, slow phase
was due to synaptic plasticity. Thus, the model makes the prediction that biological perilesion
map changes will be demonstrable within a few minutes of a cortical lesion. While there are a few
experimental animal studies that have examined post-lesion cortical map reorganization (see below),
none of these have measured maps immediately following the lesion. Recent experimental studies in
animals have repeatedly shown map reorganization within minutes following focal deafferentation
of cortex [Metzler & Marks, 1979; Gilbert & Wiesel, 1992]; our model predicts that they will occur
following cortical lesions as well and provides some details about their nature.

The second prediction of our model is that increased perilesion excitability is necessary for
effective map reorganization in cortex surrounding an acute focal lesion. When increased perilesion
excitability was present during the first phase of map reorganization, the cortex surrounding the
lesion consistently participated in the map reorganization process, even achieving a higher density
feature map than in the prelesion cortex. Presumably such effective utilization of surrounding intact
cortex following a lesion could contribute to behavioral recovery following an ischemic stroke. On the
other hand, when there was decreased excitation in perilesion cortex, this intact cortex consistently
did not participate in map reorganization, and the perilesion cortex that “dropped out” of the
map actually expanded with time due to the normal modifications of synaptic strengths. These
very different results, observed here for pure feature maps (PI) and for feature maps involving
topographically arranged inputs (to MI from PI), are consistent with similar results obtained in
our earlier study involving pure topographic maps [Sutton et al., 1994; Armentrout et al., 1994].

The notion that perilesion excitability is an important factor may prove useful in inter-
preting animal studies of post-lesion map reorganization. Under some conditions in these
studies, functions originally represented in the infarct zone of sensorimotor cortex reap-
peared or expanded in nearby intact cortex [Jenkins & Merzenich, 1987; Nudo & Milliken, 1996;
Castro-Alamancos & Borrel, 1995], while under other conditions they did not [Nudo et al., 1996].
Our model suggests that assessing perilesion excitability under these differing conditions may shed
light on why the different results occur.

The dependence of map reorganization upon perilesion excitability in the model can be explained
by examining the synaptic modification rule that produces map formation originally. Informally,
this rule causes changes to a cortical element’s receptive field 1) at a rate proportional to how active
that element is, and 2) such that the receptive field shifts to become more like the pattern of input
elements that activate that cortical element. Thus, when the activation of a perilesion element is
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low, its receptive field changes very slowly and little reorganization occurs. When perilesion activity
is high, the receptive field will change quickly and substantial reorganization will occur. In this
context, the differences in the input connections to PI and MI account for differences in how these
two regions reorganize. In PI, the diffuse afferent inputs have little influence on, and therefore little
correlation with, the perilesion elements following a lesion. Thus intact cortical elements adjacent
to the original post-lesion functional deficit lose correlated activity from neighbors, become less
correlated with specific input patterns, and tend to drop out of the map. In contrast, the coarsely
topographic connections from PI to MI that originally supply the outer region of lesioned cortex
have an increased influence on, and become more correlated with, perilesion elements, causing the
latter’s receptive fields to shift and thus substantial map reorganization to occur.

In the context of these modeling results, it is interesting to note that there does exist di-
rect experimental evidence for increased excitability in intact cortex following a small focal lesion
[Domann et al., 1995]. Such increased excitability has generally been viewed as detrimental, al-
though this is controversial [Hossmann, 1994]. Our computational model suggests that, in addi-
tion, increased excitability may play an important and previously unrecognized role in recovery
from stroke. At the very least, the model indicates that further experimental investigation of this
issue is warranted and will be useful in obtaining a better understanding of recovery after stroke.
In our model, the primary factors determining whether perilesion activity increased or decreased
were the extent of divergence of afferents to the cortical region and the ratio of intracortical lateral
excitation to inhibition. In other words, in both PI and MI the cortex immediately around the le-
sion lost excitatory input from the lesioned region. However, the widely divergent inputs to PI were
insufficiently powerful to compensate for this loss of perilesion excitation from lateral connections
arising in the lesion area, while the much more focused afferents to MI were.
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