Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Photoinduced Electron Transfer in Ionic Media

    Thumbnail
    View/Open
    umi-umd-5927.pdf (6.339Mb)
    No. of downloads: 1407

    Date
    2008-12-08
    Author
    Vieira, Rebecca
    Advisor
    Falvey, Daniel E
    Metadata
    Show full item record
    Abstract
    The goal of this research was to explore the use of room temperature ionic liquids (RTILs) and ionic liquids crystals (ILCs) as reaction media for photoinduced electron transfer (PET) processes. Photoinduced electron transfer in two room-temperature ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6) and 1-octyl-3-methylimidazolium hexafluorophosphate (OMIM-PF6) has been investigated using steady-state fluorescence quenching of 9,10-dicyanoanthracene (DCA) with a series of single electron donors. From these fluorescence quenching rates, reorganization energy values and kdiff values can be derived from a Rehm-Weller analysis. In many cases, these fluorescence quenching reactions occur at rates larger than what would be expected based on the Smoluchowski equation. In addition, reorganization energy values of 10.1 kcal/mol and 16.3 kcal/mol for BMIM-PF6 and OMIM-PF6, respectively, have been determined. The dynamics of electron transfer reactions in butyl pyridinium bis(trifluoromethanesulfonyl)imide (BuPyr-NTf2) and other solvents have been explored using laser flash photolysis. In these experiments, benzophenone (BP), duroquinone (DQ), and 9-cyanoanthracene (9CA) were used as excited-state acceptors, 1,4-diazabicyclo[2.2.2]octane (DABCO) and hexamethylbenzene (HMB) were used as ground-state donors, and methyl viologen (MV2+) was used as a probe molecule. Analysis of kinetic and spectroscopic data from these experiments shows that electron transfer from photoreduced acceptors to the probe occurs via one or more solvent ions in cases where the acceptor anion radical has a reduction potential that is more negative than the solvent ions (BP- and 9CA- in BuPyr-NTf2). Mediated electron transfer was demonstrated to significantly enhance quantum efficiencies of photoinduced electron transfer in cases where back electron transfer would otherwise predominate. In addition to RTILs, a pyridinium and imidazolium ILC were used as reaction media in LFP experiments. In these experiments, BP and a pyrromethene dye were used as excited-state acceptors, DABCO and DMB were used as ground-state donors, and MV2+ was used as a probe molecule. In these experiments it was determined that the pyridinium ILC was able to mediate electron transfer with both BP and PM such that quantum efficiencies (Φ) using both acceptors are improved significantly. Additionally, a rate enhancement for PET is observed using the pyridinium ILC as opposed to the imidazolium ILC for the BP system.
    URI
    http://hdl.handle.net/1903/8891
    Collections
    • Chemistry & Biochemistry Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility