Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Energetics of Drug Interactions

    Thumbnail
    View/Open
    umi-umd-5821.pdf (3.308Mb)
    No. of downloads: 1099

    Date
    2008-11-26
    Author
    Todorova, Niya Ancheva
    Advisor
    Kelman, Zvi
    Schwarz, Frederick P.
    Metadata
    Show full item record
    Abstract
    The goal of our research is to determine in terms of thermodynamic change of state functions the effects of experimental factors, such as water, mutagenesis, or the presence of a second substrate on the energetics of drug-inhibitor binding interactions. The binding of non-steroidal anti-inflammatory drugs within the rigid cavities of cyclodextrins was investigated by titration calorimetry and spectrofluorimetry. Loss of bulk water structure upon drug binding in the smaller hydrophobic β-cyclodextrin cavity results in an increase in the binding entropy, while restriction of the configurations of the drug in the cavity decreases the binding entropy. This restriction in the hydrophobic β-cyclodextrin cavity enhances the binding enthalpies so that the β-cyclodextrin binding reactions are enthalpy-driven. In the larger γ-cyclodextrin cavity, water is retained so that, not only are the interactions between the drug and the cavity reduced, there is an increase in the drug configurations resulting in increases in the binding entropies and the binding reactions become entropically-driven. These binding reactions also manifest enthalpy-entropy compensation where changes in the binding enthalpies are compensated by changes in the binding entropies. In drug binding to the more flexible p38α MAP kinase mutants, a single-point C→S mutation distal from the binding site, changes the interaction between the N- and C-terminal structural domains of the kinase as evident in differential scanning calorimetry. Calorimetric results show that drug-inhibitor binding affinities to kinase increase with size of the drugs since the binding reactions are all enthalpically-driven. Drug-inhibitors binding to trimeric human purine nucleoside phosphorylase were investigated by calorimetry in the presence of its second substrate, inorganic phosphate (Pi). Increasing concentrations of Pi modulates the driving-nature of the binding reaction, so that the acyclovir binding almost exclusively to the purine substrate binding site becomes more entropically-driven, while the binding reactions of ganciclovir and 9-benzylguanine interacting also with the adjacent Pi substrate site become more enthalpically-driven. A novel calorimetric enzyme activity assay at the low dissociation concentrations of the phosphorylase show an increase in the enzyme activity at low Pi concentrations, but also a decrease in the 9-benzylguanine binding affinity since this drug also interacts with an adjacent subunit.
    URI
    http://hdl.handle.net/1903/8800
    Collections
    • Cell Biology & Molecular Genetics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility