Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Quantifiable Data Mining Using Principal Component Analysis

    Thumbnail
    View/Open
    CS-TR-3754.ps (676.7Kb)
    No. of downloads: 546

    Auto-generated copy of CS-TR-3754.ps (567.9Kb)
    No. of downloads: 1525

    Date
    1998-10-15
    Author
    Korn, Flip
    Labrinidis, Alexandros
    Kotidis, Yannis
    Faloutsos, Christos
    Kaplunovich, Alex
    Perkovic, Dejan
    Metadata
    Show full item record
    Abstract
    Association Rule Mining algorithms operate on a data matrix (e.g., customers x products) to derive rules. We propose a single-pass algorithm for mining linear rules in such a matrix based on Principal Component Analysis. PCA detects correlated columns of the matrix, which correspond to, e.g., products that sell together. The first contribution of this work is that we propose to quantify the ``goodness'' of a set of discovered rules. We define the ``guessing error'': the root-mean-square error of the reconstructed values of the cells of the given matrix, when we pretend that they are unknown. The second contribution is a novel method to guess missing/hidden values from the linear rules that our method derives. For example, if somebody bought $10 of milk and $3 of bread, our rules can ``guess'' the amount spent on, say, butter. Thus, we can perform a variety of important tasks such as forecasting, `what-if' scenarios, outlier detection, and visualization. Moreover, we show that we can compute the principal components with a single pass over the dataset. Experiments on real datasets (e.g., NBA statistics) demonstrate that the proposed method consistently achieves a ``guessing error'' of up to 5 times lower than the straightforward competitor. (Also cross-referenced as UMIACS-TR-97-13)
    URI
    http://hdl.handle.net/1903/879
    Collections
    • Technical Reports from UMIACS
    • Technical Reports of the Computer Science Department

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility