
Quanti�able Data Mining Using Principal ComponentAnalysisFlip Korn, Alexandros Labrinidis, Yannis Kotidis,Christos Faloutsos�, Alex Kaplunovich, Dejan Perkovi�cfflip,labrinid,kotidis,christos,kaplunov,dejanpg@cs.umd.eduDepartment of Computer ScienceUniversity of Maryland at College ParkAbstractAssociation Rule Mining algorithms operate on a data matrix (e.g., customers � products) toderive rules [2, 22]. We propose a single-pass algorithm for mining linear rules in such a matrix basedon Principal Component Analysis. PCA detects correlated columns of the matrix, which correspondto, e.g., products that sell together.The �rst contribution of this work is that we propose to quantify the \goodness" of a set of dis-covered rules. We de�ne the \guessing error": the root-mean-square error of the reconstructed valuesof the cells of the given matrix, when we pretend that they are unknown. The second contributionis a novel method to guess missing/hidden values from the linear rules that our method derives. Forexample, if somebody bought $10 of milk and $3 of bread, our rules can \guess" the amount spenton, say, butter. Thus, we can perform a variety of important tasks such as forecasting, `what-if'scenarios, outlier detection, and visualization. Moreover, we show that we can compute the principalcomponents with a single pass over the dataset.Experiments on real datasets (e.g., NBA statistics) demonstrate that the proposed method con-sistently achieves a \guessing error" of up to 5 times lower than the straightforward competitor.1 IntroductionData Mining has recently been receiving increasing interest [9], of which the quintessential problemis association rule mining [2]. Given a data matrix, with, e.g., customers for rows and products forcolumns, we want to �nd rules. Existing algorithms �nd rules of the form fbread;milkg ) butter,meaning that customers who buy \bread" and \milk" also tend to buy \butter". What distinguishesdatabase work from AI/Machine Learning and statistics work is its emphasis on large datasets. Theinitial association rule mining paper by Agrawal et al. [2], as well as all the follow-up database work [4],proposed algorithms to minimize the time to extract these rules through clever record-keeping to avoidadditional passes over the dataset, through parallelism, etc.�This research was partially funded by the Institute for Systems Research (ISR), by the National Science Foundationunder Grants No. EEC-94-02384, IRI-9205273 and IRI-9625428.1



What is novel about the present work is that it attempts to assess how good the derived rules are, anissue that has not been emphasized in in the database literature. We propose the \guessing error" as ameasure of the \goodness" of a given set of rules for a given dataset. The idea is to pretend that a cellof the matrix is \hidden" from us, and to try to guess the missing value using the derived rules; theroot-mean-square guessing error (averaged over all the cells of the given matrix) indicates how good a setof rules is. The second major innovation of this work is the use of principal component analysis (PCA)to derive linear rules, of the form \customers typically spend 1:2:5 dollars on bread:milk:butter". Linearrules can be easily used for extrapolations, and can help determine hidden, missing and corrupted values.We provide novel algorithms for estimating missing values, even if multiple values are simultaneouslymissing/hidden.PCA (via linear rules) can support the following applications, thanks to their ability to reconstructmissing/hidden values:� Data cleaning: reconstructing lost data and repairing noisy or damaged data;� Forecasting: `if a customer spends $1 on bread and $2.50 on ham, how much will s/he spend onmayonnaise?';� What-if scenarios and decision support: `We expect doubled demand of Cheerios; how much milkshould we stock up on?';� Outlier detection: `Which customers deviate from the typical sales pattern?';� Visualization: PCA, being identical to the Karhunen-Loeve transform [8], is the optimal dimen-sionality reduction method, mapping the rows of the data matrix in to 2- or 3-dimensional points,that can be plotted to reveal the structure of the dataset (e.g., clusters, linear correlations, etc.);The paper is organized as follows: Section 2 discusses past work. Section 3 presents an introductionto PCA. Section 4 introduces the proposed method. Section 5 gives the experimental results. Section6 provides a discussion. Section 7 gives some conclusions and pointers to future work.2 Related WorkAgrawal et al. distinguish between three data mining problems: identifying classi�cations, �ndingsequential patterns, and discovering association rules [1]. We review only material relevant to the lattersince it is the focus of this paper. See [7] for an excellent, recent survey of all three problems.The seminal work of [2] introduced the problem of discovering association rules and presented ane�cient algorithm for mining them. Since then, new serial algorithms [4, 15, 19] and parallel algorithms[14, 3, 10] have been proposed. In addition, generalized association rules has been the subject of recentwork [21, 11].The vast majority of association rule discovery techniques are basically Boolean, since they discardthe quantities of the items bought and only pay attention to whether something was bought or not. Anotable exception is the work of Srikant and Agrawal [22], where they address the problem of miningquantitative association rules. Their approach is to partition each quantitative attribute into a set2



Symbol De�nitionN number of recordsM number of attributesk cuto� (number of principal components retained)h number of holesH set of cells which have holesRMS1 root-mean-squared error over each holeRMSh root-mean-squared error over h holes� matrix multiplicationX the N �M data matrixXc the centered version of XXt the transpose of Xxi;j value at row iand column j of the matrix Xx̂i;j reconstructed (approximate) value atrow i and column j�x the mean cell value of XC the M �M covariance matrix (Xtc �Xc)V the M � k PC matrixTable 1: Symbols, de�nitions and notation used in this paper.of intervals which may overlap, then apply techniques for mining Boolean Association Rules. In thisframework, they aim for rules such as< bread : [3� 5] > and < milk : [1� 2] > ) < butter : [1:5� 2] >The above rule says that customers that spend between 3 to 5 dollars on bread and 1 to 2 dollars onmilk, tend to spend 1.5 to 2 dollars on butter. See Section 6.3 for a comparison of this method versusour proposed method.Traditional criteria for selecting association rules are based on the support-con�dence framework [2];recent alternative criteria include the chi-square test [6] and probability-based measures [20]. Relatedissues include outlier detection and forecasting. See [13] for a textbook treatment of both, and [5] and[12] for recent developments.3 Principal Component AnalysisThe proposed method is based on principal component analysis. PCA is a popular and powerful oper-ation in statistical analysis [13]. It is identical to the Karhunen-Loeve transform from pattern recogni-tion [8].3.1 Intuition behind PCAIn our running example, we have N customers andM products organized in an N�M matrixX, wherethe entries are the dollar amount spent by customer i on product j. Table 1 gives a list of symbols3



used from here on and their de�nitions. To make our discussion more concrete, we will use rowsand \customers" interchangeably, and similarly for columns and \products". Of course, the proposedmethod is applicable to any N �M matrix, with a variety of interpretations for the rows and columns,e.g., patients and medical-test-measurements (blood pressure, body weight, etc.); documents and terms(typical in Information Retrieval [18]), etc.Each row vector of the matrix can be thought of as an M -dimensional point. Given this set of Npoints, PCA identi�es the axes (orthogonal directions) of greatest variance, after centering the pointsabout the origin. Figure 1 illustrates an example of an axis that PCA �nds. Suppose that we haveM=2 dimensions; then our customers are 2-d points, as in Fig. 1. The corresponding direction x0 thatPCA suggests is shown. The meaning is that, if we are allowed only k=1, the best direction to projecton is the direction of x0. The direction x0 is, in e�ect, a linear `rule' that governs the correlation betweenmoney spent on the products, based on customer purchasing activity. In this case, the projection ofa data point on the x0 axis gives the overall \volume" of the purchase. For the setting of Figure 1,the coordinates of the �rst PC = (0.866, 0.5) imply the linear rule \bread : butter ) $:50 : $:866",that is, for the most of our customers (2-d points) the relative spendings bread-to-butter are close tothe ratio 0.866:0.5. As we shall see shortly, these linear rules can be used for forecasting, `what-if'scenarios, outlier detection, and visualization. In addition, they are often amenable to interpretation asunderlying factors to describe, in this case, purchasing behavior.bread buttercustomer ($) ($)Billie .89 .49Charlie 3.34 1.85Ella 5.00 3.09� � � � � � � � �John 1.78 .99Miles 4.02 2.61 $ 
sp

en
t o

n 
bu

tte
r

$ spent on bread

PC 1 ("v
olume")

(0.866,0.5)Figure 1: A data matrix in table form and its counterpart in graphical form, after centering (originalaxis drawn with dotted lines). As the graph illustrates, PCA identi�es the vector (0:866; 0:5) as the\best" axis to project along.Technically, the directions identi�ed by PCA are the eigenvectors of the covariance matrix C (seeEq. 2); each eigenvector has an associated eigenvalue whose magnitude indicates the variance of thepoints along that eigenvector. (See Appendix A for formal de�nitions of eigenvalues and eigenvectors.)The goal of PCA is to reduce the dimensionality of a dataset while retaining as much variation aspossible. PCA does this by identifying the direction of maximum variance (given by the largest eigen-value/vector) and then incrementally identifying the orthogonal direction with maximum variance (thesecond eigenvalue/vector, etc.). In the end, only the eigenvectors associated with the k largest eigen-values, namely the principal components, are kept. The goal here is to preserve most of the importantinformation while discarding the redundancy. In order to choose the cuto� k of PCs to retain, the sim-plest textbook heuristic [13, p. 94] is to retain enough eigenvectors so that the sum of their eigenvalues4



cover 85% of the grand total. That is, choose the cuto� k such thatPki=1 �iPMj=1 �j � 85% (1)This is the heuristic that we used in this paper.4 Proposed MethodThe proposed method is based on PCA. In subsection 4.1 we present an e�cient, single-pass algorithm tocompute the k principal components. A fast algorithm is extremely important for database applications,where we expect matrices with several thousands or millions of rows. Subsection 4.2 presents one ofthe two major contributions of this paper: the introduction of a measure for the \goodness" of a givenset of rules. Subsection 4.1 presents the second major contribution: how to use the linear rules (i.e.,eigenvectors) of PCA, to predict missing/hidden values.4.1 A Single-Pass Algorithm for PCABy de�nition, PCA needs to compute the eigenvectors of the covariance matrix C of the given N �Mmatrix X. The covariance matrix C = [cij] intuitively is the \column-to-column" similarity matrix,having high cij values if the columns i and j are correlated. Mathematically, it is de�ned asC � Xtc �Xc (2)where Xc is derived by the given X matrix by subtracting the column average from every cell. That is,Xc is a zero-mean matrix, or \centered", in the sense that its column averages are all zero.The covariance matrix C is a square matrix of side M . To compute the PCs, we have to perform thefollowing steps: (a) zero-mean the input matrix to derive Xc; (b) compute C from Eq. 2; (c) computethe eigenvalues/vectors of C and pick the �rst k. We assume that C can �t in memory: it needs M2cells, where M is the number of columns/products, which should typically be on the order of hundredsor thousands, for real applications. Under this assumption, we can compute the column averages andthe covariance matrix with a single-pass over the N (� millions) of rows of the given X matrix, usingthe algorithm of Figure 2(a).Once we have the covariance matrix C in memory, we can use any o�-the-shelf eigensystem packageto determine its eigenvalues and eigenvectors, as shown in Fig. 2(b).In conclusion, our algorithm requires a single pass to compute the column averages and the covariancematrix. In more detail, it requires O(N) disk operations to read the matrix X and O(NM2) main-memory operations to build the corresponding covariance matrix C. Since typically the number ofrows is in the hundreds of thousands (e.g., sales, or customers), and the number of columns in thehundreds (e.g., products, or patient symptoms), our algorithm of Fig. 2 is very e�cient. Notice that thealgorithms of [3] require more than one pass over the dataset in an attempt to �nd large itemsets. Alsonotice that the O(M3) factor for the eigensystem computation is negligible, compared to the O(NM2)operations needed to build the covariance matrix, since we assume that N �M .5



/* input: training set X on disk *//* output: covariance matrix C */for j := 1 to M docolavgs[j]  0;for l := 1 to M doC[j][l]  0;for i := 1 to N doRead ith row of X from disk (X[i][1],...,X[i][M]);for j := 1 to M docolavgs[j] += X[i][j];for l := 1 to M doC[j][l] += X[i][j]*X[i][l];for j := 1 to M docolavgs[j] /= N;for j := 1 to M dofor l := 1 to M doC[j][l] -= N � colavgs[j] * colavgs[l];
input: covariance matrix C in mainmemoryoutput: eigenvectors v1; : : : ; vk (i.e.,the PCs)compute eigensystem:fv1; : : : ;vMg  eigenvectors(C);f�1; : : : ; �Mg  eigenvalues(C);sort vj according to theeigenvalues;choose k based on Eq. 1;return the k largesteigenvectors;complexity: O(M3)(a) (b)Figure 2: Pseudocode for e�cient computing of the PCA: (a) single-pass over data matrix and (b)eigensystem computation4.2 Measuring Goodness: the \Guessing Error"The association rule mining literature has not de�ned a criterion to assess the \goodness", or accuracy,of a set of discovered rules. We propose a remedy, through the notion of the \guessing error". Thefundamental requirement is that the given set of rules R allow for estimations of missing values in agiven record/row.The question is: how good is a set of rules R for a data matrix X? Let's consider a speci�c row (=customer) xi of the matrix, and let's pretend that the j-th attribute is hidden from us (i.e., the amountspend on the j-th product, e.g., bread). Thanks to R and the rest of the values xi;m (m 6= j), we areable to estimate the missing value as x̂ij . The guessing error for this speci�c cell (i; j) is x̂ij � xij .De�nition 1 The guessing error for a set of rules R on a data matrix X is de�ned as the root meansquare of the guessing errors of the individual cells, that isRMS =vuut 1NM NXi MXj (x̂ij � xij)2 (3)More speci�cally, we also de�ne it as the single-hole guessing error RMS1, exactly because we allowedonly a single hole at a time. The generalization to the h-hole guessing error RMSh is straightforward.We have not yet discussed how the set of rules R was derived. Using a practice that is commonin Machine Learning, we can use a portion Xtrain of the data set X to derive the rules R (\trainingset"), and some other portion Xtest of the data set X to compute the guessing error (\testing set").The details of the choice of training and testing sets is orthogonal to our de�nition, and outside thescope of this work, since they have been extensively examined in the machine learning and classi�cation6



literature [17]. A reasonable choice is to use 90% of the original data matrix for training and theremaining 10% for testing. Another possibility is the use the entire data matrix for both training andtesting. In this paper, we report only the results the former choice because the two choices above gavevery similar results.The ability to measure the goodness of a set of rules R for a given testing datasetY is very important,for developers of data-mining products and for end-users alike:� For developers, it allows benchmarking and comparison with competing products and designs: alow \guessing error" over a variety of input matrices indicates a good product.� For end-users that use a given product on a speci�c dataset, low \guessing error" implies that thederived rules have captured the essence of this dataset, and that they can be used for estimationof truly unknown values with more con�dence.We would like to highlight that the de�nition of the \guessing error" can be applied to any typeof rules, as long as they can do estimation of hidden values. In the next subsection we focus on ourproposed linear rules, and show how to use them to obtain such estimates.4.3 Determining Hidden and Unknown ValuesHere we illustrate (sketch) the algorithm for determining unknown values of the data matrix. If wecan reconstruct holes, then we can �nd hidden values or forecast future values. This framework isalso applicable to `what-if scenarios' where we can specify some of the values (`What if the demand forCheerios doubles?') and then forecast the e�ect on other attributes (`Then the demand for milk willdouble.'). In addition, it can be used to discover outliers by hiding a cell value, reconstructing it, andcomparing the reconstructed value to the hidden value. The value is an outlier when the value predictedis signi�cantly di�erent from the existing hidden value.Once the user has speci�ed partial knowledge from a transaction (e.g., the dollar amounts spent by anew customer, for some products, are given), the set of unknowns H are determined by the k PCs thathave been kept. The geometric intuition is the following: the PCs form a k-dimensional hyper-plane inM -space, the \PC-hyperplane", on or close to which the data points lie. The h holes result in an h-dimensional hyper-plane in M -space, the \feasible solution space", on which the solution is constrained.We want to �nd a point that de�nitely agrees with our given partial data (\feasible solution space"),and is as close to (or exactly on) the \PC-hyperplane". Figure 3(a) illustrates the case in the simplestpossible form: we have M=2 products, k=1 PC, and h=1 hole. Namely, we know (a) that a customerspends the given amount on bread and (b) that most of our previous customers fall on or close to theline de�ned by the �rst PC. We want to �nd the amount spent on butter (the hole). The intersection of\feasible locations" (vertical dashed line) and \expected locations" (solid diagonal line) gives our bestprediction for the 2-d point that corresponds to that sale; the value on the \butter" axis, labeled as\guess" is our proposed estimate for the required amount spent on butter.The two hyper-planes correspond to linear equations, which are presented in Appendix A. There arethree possibilities regarding their intersection, all of which are illustrated in Fig. 3-4:CASE 1: (EXACTLY-SPECIFIED) The two hyper-planes intersect at a point. This occurs when7



(k+h) = M . Here the respective linear equations have an exact solution. Figure 3(a) illustratesan example in M = 2 dimensions, for h = 1, hole and cuto� k = 1 principal component.CASE 2: (OVER-SPECIFIED) The two hyper-planes do not intersect. This occurs when (k+h) < M .The respective equations are overdetermined, and the closest distance between them is chosenfor the solution. Figure 3(b) illustrates an example in M = 3 dimensions, for h = 1 hole andcuto� k = 2.CASE 3: (UNDER-SPECIFIED) The intersection of the two hyper-planes forms a (min(k; h)� 1)-dimensional hyper-plane. This occurs when (k + h) > M . The respective equations are under-determined. Among the in�nite solutions, we propose to keep the one that needs the fewesteigenvectors. Thus, we ignore (k + h)�M PCs to make the system exactly-speci�ed, and thensolve it using CASE 1. Figure 4 illustrates an example in M = 3 dimensions, for h = 2 holesand cuto� k = 2.
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Figure 6: Guessing error vs. number of holes (1-5) for the `nba' and `baseball' datasets, `col-avgs' vs.PCA.`nba' dataset, we demonstrate how these linear rules can be interpreted, with references to the plots.Finally, we present a qualitative comparison of the linear rules of PCA versus general association rulesthat were the subject of [22].6.1 VisualizationThe application of PCA for visualization has been well-studied, and is well known in the patternclassi�cation and image processing literature as the Karhunen-Loeve (KL) transform [8]. Recall thatPCA identi�es the axes of greatest variation. By projecting the points onto the top two or three of theseaxes (i.e., the eigenvectors associated with the largest eigenvalues), the points can be plotted to give anidea of the density and structure of the dataset. For example, Figure 8 shows a scatter-plot of a datasetof `nba' which originally included the statistics of N=459 players for M=12 attributes and has beenreduced to 2-dimensional PC space (i.e., two principal components). In (a), the x-axis corresponds tothe �rst (and strongest) principal component; the y-axis corresponds to the second principal component.In (b), the x-axis corresponds to the second PC and the y-axis corresponds to the third PC. Most of thepoints are very close to the horizontal axis, implying that they all closely follow the �rst eigenvector andare considerably linear. The plot also shows that many of the attributes are correlated with one another,such as �eld goals and minutes played. There are two points that are clearly outliers: (3000; 971) and(2100;�1296), corresponding to Michael Jordan and Dennis Rodman, respectively. Figure 9 shows 2-dplots for (a) `baseball' and (b) `abalone'.6.2 Interpretation of the Linear Rules 11
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Figure 7: Scale-up: time to compute PCA versus db size N in records.In this section, we illustrate by example how principle components can be interpreted as the under-lying factors that govern a dataset. Table 2 presents the �rst three principal components (PC1, PC2,and PC3) for the `nba' dataset (see Fig. 8), after truncating small row values (speci�cally, cells whoseabsolute value is less than half the maximum absolute row cell value). For example, PC1 was truncatedto (:808;� 0; : : : ; :406;� 0; : : : ;� 0)By drawing on common knowledge of basketball and by examining these principal components, weconjecture the following: PC1 represents \court action", separating the starters from those who sit onthe bench, and gives a 0.808:0.406 = 2:1 ratio. This is a linear rule with the obvious interpretation:the average player scores 1 point for every 2 minutes of play. (that is, roughly 1 basket for every 4minutes played). According to PC1, Jordan was across-the-board the most active player that season�eld PC1 PC2 PC3minutes played .808 �:4�eld goalsgoal attemptsfree throwsthrows attemptedblocked shotsfoulspoints .406 .199o�ensive reboundstotal rebounds �:489 .602assists �:486steals �:07Table 2: Relative values of the PCs from `nba'.12
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(a) side view (b) front viewFigure 8: A scatter plot of `nba': two 2-d orthogonal views.in almost every statistic. PC2 shows that the number of o�ense rebounds is negatively correlated withpoints in a 0.489:0.199 � 2.45:1 ratio. Intuitively, this is because a goal attempt makes it di�cult fora player to get in a good position for rebounding, and vice versa. Thus, PC2 roughly represents \�eldposition", separating the guards, who get the most opportunities to shoot, from the forwards, who aremore likely to be rebounders. For example, in Fig. 8, we see the extremes among active players: starshooting guard and Michael Jordan at one end with 2404 points and 91 rebounds, and power forward(and excellent rebounder) Dennis Rodman at the other with 800 points and 523 rebounds. PC3 saysthat rebounds are negatively correlated with assists and steals. Typically, tall players make betterrebounders because they can reach high and short players are better at assists and steals because theycan move fast. Thus, PC3 roughly represents \height", with Mugsy Bogues (5'3") and Karl Malone(6'8") at opposite extremes. (See Figure 8(b)).6.3 Linear Rules vs. Association RulesSince we propose a completely di�erent paradigm of rules, namely, linear rules as opposed to associationrules, it is important to discuss the qualitative di�erences between the two. Speci�cally, we are concernedwith the following types of rules:� Boolean association rules [2]: e.g., fbread;milkg) butter� quantitative association rules [22]: e.g., < bread : [2� 5] > ) < butter : [1� 2] >� linear rules: e.g., ratio of spendings bread:butter = 2:3Boolean association rules have the advantages that they are easy to interpret and relatively easyto implement. On the weak side, a given data matrix X with, say, amounts spent per customer perproduct, is converted to a binary matrix by treating non-zero amounts as plain \1"s. This simpli�esthe data mining algorithms but tends to lose valuable information.13
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(a) `baseball' (b) `abalone'Figure 9: Scatter plots of (a) `baseball' and (b) `abalone' in 2-d PC space.Quantitative association rule algorithms perform an important step to retain the above information.Figure 10(a) illustrates how these rules might work for a �ctitious dataset with a few customers (points)and M = 2 products only, namely, \bread" and \butter". In this dataset, the quantitative associationrules will derive rules that corresponds to the dashed rectangles of the �gure. For example, the �rsttwo lower-left rectangles will yield the rules< bread : [1� 3] > ) < butter : [:5� 2:5] >< bread : [3� 5] > ) < butter : [2� 3] >Linear rules, for the same setting of Figure 10 and with k = 1 PC, will �t the best possible line throughthe dataset; its unit vector is exactly the �rst PC of the given data matrix. Thus, the correspondingrule will look likebread : butter = :81 : :58Intuitively, we conjecture that the quantitative association rules should supersede the Boolean associa-tion ones, which are not discussed further. Comparing the linear rules with the quantitative associationrules, we identify the following strong points for each approach.The advantage for the quantitative association rules are� They will be more suitable if the data points form clusters.� They have been applied to categorical data, although similar extensions of PCA are discussedin [13].For the linear rules, the advantages are the following:14



� They achieve more compact descriptions, if the data points are linearly correlated, as in Figure 10,or as in the real datasets that we saw earlier. In such cases, a single linear rule captures the cor-relations, while several minimum bounding rectangles are needed by the quantitative associationrules to convey the same information;� They can perform extrapolations and predictions: For example, in Figure 10, suppose that weare given that a customer bought $8.50 of bread; how much butter is s/he expected to buy? Thelinear rules will predict $6.10 on butter, as Figure 10(b) illustrates. The quantitative associationrules have no rule that can �re, exactly because the vertical line of \feasible solutions" intersectsnone of the bounding rectangles. Thus they are unable to make a prediction;� Their derivation requires a single pass over the dataset;� They are easily implemented: thanks to highly �ne-tuned eigensystem packages, the remainingprogramming e�ort is minimal. As an indication, Appendix B lists the code for the Karhunen-Loeve transform (�PCA), in mathematica. Notice that, excluding comments and blank lines, itspans 9 lines! The code is available at available at ftp://olympos.cs.umd.edu/pub/SRC/kl.m.
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(a) Quantitative (b) Linear RulesFigure 10: Illustration of Rules on a �ctitious dataset of sales on bread and butter: (a) quantitativeassociation rules; (b) linear rules. The \given" entry asks for an estimation for butter, for the givenamount spent on bread7 ConclusionsWe have proposed a completely di�erent type of rules as the target of data mining e�orts, namely, linearrules. These rules have signi�cant advantages over Boolean and quantitative association rules:� They lead to a natural measure, the \guessing error", which can quantify how good a given set ofrules is; 15



� They can estimate one or more missing/hidden/corrupted values, when a new data record is given;thus, they can also be used in forecasting, for `what-if' scenarios, and for detecting outliers;� They are based on the time-tested tool of Principal Component Analysis (PCA), which is theoptimal way to perform dimensionality reduction [13];� They are easy to implement: the most di�cult part of our method is the solution of an eigensystemfor which reliable packages and/or source code are widely available;� They are fast and scalable, requiring a single pass over the data matrix, and growing linearly onthe largest dimension of the matrix, presumably the number N of rows (customers);� They give visualization for free, thanks to the dimensionality reduction properties of PCA.We discussed how to interpret linear rules and what their qualitative di�erences are from the Associa-tion Rules. Finally, we presented experiments on several real datasets, which showed that the proposedlinear rules can achieve up to 5 times smaller guessing error than its competitor.Future research could focus on further applications of linear rules and PCA for data mining applica-tions, such as for categorical data, outlier detection, and so on.AcknowledgmentsWe would like to thank Bj�orn Th�or J�onsson and Kostas Stathatos for their help in interpreting thePCs for the ``nba'' dataset. We would also like to thank Rakesh Agrawal for o�ering us his syntheticdataset generator, and Mike Franklin for providing an RS/6000 to install and run the generator.
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A Linear Algebra De�nitions and ProofsHere we give the formal de�nition of eigenvalues and eigenvectors:De�nition 2 For a square n � n matrix S, a unit vector u and a scalar � that satisfyS� u = �� u (4)are called an eigenvector and its associated eigenvalue, respectively, of the matrix S.Next, we give the algorithm to determine hidden and unknown values. We start with some preliminaryde�nitions.De�nition 3 The complement of a set A is denoted AC .De�nition 4 An h-hole row vector bH is de�ned as a vector with holes (denoted with \?"s) at indicesgiven in H.An example of a 5� 1 2-hole row vector is the following:bf2;4g = [b1; ?; b3; ?; b5] (5)De�nition 5 An (M � h) �M elimination matrix EH is de�ned as an M �M identity matrix withh = jHj rows removed, where the row indices are given in the set H.An example of a 3� 5 elimination matrix is the following:Ef2;4g = 264 1 0 0 0 00 0 1 0 00 0 0 0 1 375 (6)An elimination matrix is very useful in helping us pick and choose entries from vectors. For example,we can eliminate the \?"s from bf2;4g as follows:Ef2;4g � btf2;4g = 264 1 0 0 0 00 0 1 0 00 0 0 0 1 375� 2666664 b1?b3?b5 3777775 = 264 b1b3b5 375 (7)Following is pseudocode for �lling in the holes, which requires the use of several auxiliary vectors:b0;xconcept;d. For brevity, we omit the physical intuition behind them./* input: bH, a 1�M row vector with holes *//* output: b̂, a M � 1 row vector with holes filled */17



1. b0  EH � btH;2. V0  EH �V;3. solve V0 � xconcept = b0 for xconcept4. d V � xconcept;5. b̂ b� [EHc ]t + d� [EH]t;In step 3, the equation V0 � xconcept = b0, where there are (M � h) equations and k unknowns, caneither be exactly-speci�ed, over-speci�ed, or under-speci�ed:CASE 1: (EXACTLY-SPECIFIED) This occurs when (k + h) =M .Here the respective linear equations have an exact solution. In this case,xconcept = (V0)�1 � b0 (8)CASE 2: (OVER-SPECIFIED) This occurs when (k + h) < M .Here the system has no solution, so we �nd a least-squares solution for xconcept based on theMoore-Penrose pseudo-inverse of V0. This uses the singular value decomposition (see [16]) ofV0: V0 = R � diag(�j)� St (9)Since V0 is singular, no inverse exists, but we can �nd a pseudo-inverse:[V0]�1 = S� diag(1=�j)�Rt (10)and, thus, xconcept = [V0]�1 � b0 (11)CASE 3: (UNDER-SPECIFIED) This occurs when (k + h) > M .Here there are an in�nite number of solutions. We propose to reduce the solution by `throwingaway' (k + h)�M PCs to make the system exact, and then solve using CASE 1.B Karhunen-Loeve Code(* given a matrix mat_ with $n$ vectors of $m$ attributes,it creates a matrix with $n$ vectors and theirfirst $k$ most 'important' attributes(ie., the K-L expansions of these $n$ vectors)*)KLexpansion[ mat_, k_:2] := mat . Transpose[ KL[mat, k] ];(* given a matrix with $n$ vectors of $m$ dimensions,computes the first $k$ singular vectors,ie., the axes of the first $k$ Karhunen-Loeve expansion*)KL[ mat_ , k_:2 ]:= Module[ 18



{n,m, avgvec, newmat,i,val, vec },{n,m} = Dimensions[mat];avgvec = Apply[ Plus, mat] / n //N;(* translate vectors, so the mean is zero *)newmat = Table[ mat[[i]] - avgvec , {i,1,n} ];{val, vec} = Eigensystem[ Transpose[newmat] . newmat ];vec[[ Range[1,k] ]]]
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