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Abstract

Association Rule Mining algorithms operate on a data matrix (e.g., customers x products) to
derive rules [2, 22]. We propose a single-pass algorithm for mining linear rules in such a matrix based
on Principal Component Analysis. PCA detects correlated columns of the matrix, which correspond
to, e.g., products that sell together.

The first contribution of this work 1s that we propose to quantify the “goodness” of a set of dis-
covered rules. We define the “guessing error”: the root-mean-square error of the reconstructed values
of the cells of the given matrix, when we pretend that they are unknown. The second contribution
is a novel method to guess missing/hidden values from the linear rules that our method derives. For
example, if somebody bought $10 of milk and $3 of bread, our rules can “guess” the amount spent
on, say, butter. Thus, we can perform a variety of important tasks such as forecasting, ‘what-if’
scenarios, outlier detection, and visualization. Moreover, we show that we can compute the principal
components with a single pass over the dataset.

Experiments on real datasets (e.g., NBA statistics) demonstrate that the proposed method con-
sistently achieves a “guessing error” of up to 5 times lower than the straightforward competitor.

1 Introduction

Data Mining has recently been receiving increasing interest [9], of which the quintessential problem
is association rule mining [2]. Given a data matrix, with, e.g., customers for rows and products for
columns, we want to find rules. Existing algorithms find rules of the form {bread, milk} = butter,
meaning that customers who buy “bread” and “milk” also tend to buy “butter”. What distinguishes
database work from AI/Machine Learning and statistics work is its emphasis on large datasets. The
initial association rule mining paper by Agrawal et al. [2], as well as all the follow-up database work [4],
proposed algorithms to minimize the time to extract these rules through clever record-keeping to avoid
additional passes over the dataset, through parallelism, etc.

*This research was partially funded by the Institute for Systems Research (ISR), by the National Science Foundation
under Grants No. EEC-94-02384, IRI-9205273 and IRI-9625428.



What is novel about the present work is that it attempts to assess how good the derived rules are, an
issue that has not been emphasized in in the database literature. We propose the “guessing error” as a
measure of the “goodness” of a given set of rules for a given dataset. The idea is to pretend that a cell
of the matrix is “hidden” from us, and to try to guess the missing value using the derived rules; the
root-mean-square guessing error (averaged over all the cells of the given matrix) indicates how good a set
of rules is. The second major innovation of this work is the use of principal component analysis (PCA)
to derive linear rules, of the form “customers typically spend 1:2:5 dollars on bread:milk:butter”. Linear
rules can be easily used for extrapolations, and can help determine hidden, missing and corrupted values.
We provide novel algorithms for estimating missing values, even if multiple values are simultaneously
missing/hidden.

PCA (via linear rules) can support the following applications, thanks to their ability to reconstruct
missing/hidden values:

e Data cleaning: reconstructing lost data and repairing noisy or damaged data;

e Forecasting: ‘if a customer spends $1 on bread and $2.50 on ham, how much will s/he spend on
mayonnaise?’;

o What-if scenarios and decision support: ‘We expect doubled demand of Cheerios; how much milk
should we stock up on?;

o Outlier detection: *Which customers deviate from the typical sales pattern?’;

e Visualization: PCA, being identical to the Karhunen-Loeve transform [8], is the optimal dimen-
sionality reduction method, mapping the rows of the data matrix in to 2- or 3-dimensional points,
that can be plotted to reveal the structure of the dataset (e.g., clusters, linear correlations, etc.);

The paper is organized as follows: Section 2 discusses past work. Section 3 presents an introduction
to PCA. Section 4 introduces the proposed method. Section 5 gives the experimental results. Section
6 provides a discussion. Section 7 gives some conclusions and pointers to future work.

2 Related Work

Agrawal et al. distinguish between three data mining problems: identifying classifications, finding
sequential patterns, and discovering association rules [1]. We review only material relevant to the latter
since it is the focus of this paper. See [7] for an excellent, recent survey of all three problems.

The seminal work of [2] introduced the problem of discovering association rules and presented an
efficient algorithm for mining them. Since then, new serial algorithms [4, 15, 19] and parallel algorithms
[14, 3, 10] have been proposed. In addition, generalized association rules has been the subject of recent
work [21, 11].

The vast majority of association rule discovery techniques are basically Boolean, since they discard
the quantities of the items bought and only pay attention to whether something was bought or not. A
notable exception is the work of Srikant and Agrawal [22], where they address the problem of mining
quantitative association rules. Their approach is to partition each quantitative attribute into a set



Symbol | Definition

N number of records

M number of attributes

k cutoff (number of principal components retained)
h number of holes

H

set of cells which have holes

RMS, root-mean-squared error over each hole
RMSy, root-mean-squared error over h holes

X matrix multiplication

X the N x M data matrix

X, the centered version of X

X! the transpose of X

value at row i

and column j of the matrix X

& ; reconstructed (approximate) value at
row ¢ and column j

X the mean cell value of X

C the M x M covariance matrix (X! x X,)
\% the M x k PC matrix

Table 1: Symbols, definitions and notation used in this paper.

of intervals which may overlap, then apply techniques for mining Boolean Association Rules. In this
framework, they aim for rules such as

< bread:[3—5]>and < milk:[1 —2] > = < butter : [1.5—2] >

The above rule says that customers that spend between 3 to 5 dollars on bread and 1 to 2 dollars on
milk, tend to spend 1.5 to 2 dollars on butter. See Section 6.3 for a comparison of this method versus
our proposed method.

Traditional criteria for selecting association rules are based on the support-confidence framework [2];
recent alternative criteria include the chi-square test [6] and probability-based measures [20]. Related
issues include outlier detection and forecasting. See [13] for a textbook treatment of both, and [5] and
[12] for recent developments.

3 Principal Component Analysis

The proposed method is based on principal component analysis. PCA is a popular and powerful oper-
ation in statistical analysis [13]. It is identical to the Karhunen-Loeve transform from pattern recogni-
tion [8].

3.1 Intuition behind PCA

In our running example, we have N customers and M products organized in an N x M matrix X, where
the entries are the dollar amount spent by customer ¢ on product j. Table 1 gives a list of symbols



used from here on and their definitions. To make our discussion more concrete, we will use rows
and “customers” interchangeably, and similarly for columns and “products”. Of course, the proposed
method is applicable to any N x M matrix, with a variety of interpretations for the rows and columns,
e.g., patients and medical-test-measurements (blood pressure, body weight, etc.); documents and terms
(typical in Information Retrieval [18]), etc.

Each row vector of the matrix can be thought of as an M-dimensional point. Given this set of N
points, PCA identifies the axes (orthogonal directions) of greatest variance, after centering the points
about the origin. Figure 1 illustrates an example of an axis that PCA finds. Suppose that we have
M =2 dimensions; then our customers are 2-d points, as in Fig. 1. The corresponding direction 2’ that
PCA suggests is shown. The meaning is that, if we are allowed only k=1, the best direction to project
on is the direction of ’. The direction 2’ is, in effect, a linear ‘rule’ that governs the correlation between
money spent on the products, based on customer purchasing activity. In this case, the projection of
a data point on the z’ axis gives the overall “volume” of the purchase. For the setting of Figure 1,
the coordinates of the first PC = (0.866, 0.5) imply the linear rule “bread : butter = $.50 : $.866",
that is, for the most of our customers (2-d points) the relative spendings bread-to-butter are close to
the ratio 0.866:0.5. As we shall see shortly, these linear rules can be used for forecasting, ‘what-if’
scenarios, outlier detection, and visualization. In addition, they are often amenable to interpretation as
underlying factors to describe, in this case, purchasing behavior.

!
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Figure 1: A data matrix in table form and its counterpart in graphical form, after centering (original
axis drawn with dotted lines). As the graph illustrates, PCA identifies the vector (0.866,0.5) as the
“best” axis to project along.

Technically, the directions identified by PCA are the eigenvectors of the covariance matriz C (see
Eq. 2); each eigenvector has an associated eigenvalue whose magnitude indicates the variance of the
points along that eigenvector. (See Appendix A for formal definitions of eigenvalues and eigenvectors.)
The goal of PCA is to reduce the dimensionality of a dataset while retaining as much variation as
possible. PCA does this by identifying the direction of maximum variance (given by the largest eigen-
value/vector) and then incrementally identifying the orthogonal direction with maximum variance (the
second eigenvalue/vector, etc.). In the end, only the eigenvectors associated with the k largest eigen-
values, namely the principal components, are kept. The goal here is to preserve most of the important
information while discarding the redundancy. In order to choose the cutoff k of PCs to retain, the sim-
plest textbook heuristic [13, p. 94] is to retain enough eigenvectors so that the sum of their eigenvalues



cover 85% of the grand total. That is, choose the cutoff k such that

Zf:l AZ
2%1 /\]

This is the heuristic that we used in this paper.

~ 85% (1)

4 Proposed Method

The proposed method is based on PCA. In subsection 4.1 we present an efficient, single-pass algorithm to
compute the k principal components. A fast algorithm is extremely important for database applications,
where we expect matrices with several thousands or millions of rows. Subsection 4.2 presents one of
the two major contributions of this paper: the introduction of a measure for the “goodness” of a given
set of rules. Subsection 4.1 presents the second major contribution: how to use the linear rules (i.e.,
eigenvectors) of PCA, to predict missing/hidden values.

4.1 A Single-Pass Algorithm for PCA

By definition, PCA needs to compute the eigenvectors of the covariance matrix C of the given N x M
matrix X. The covariance matrix C = [¢;;] intuitively is the “column-to-column” similarity matrix,
having high ¢;; values if the columns ¢ and j are correlated. Mathematically, it is defined as

C=X!xX, (2)

where X, is derived by the given X matrix by subtracting the column average from every cell. That is,
X, is a zero-mean matrix, or “centered”, in the sense that its column averages are all zero.

The covariance matrix C is a square matrix of side M. To compute the PCs, we have to perform the
following steps: (a) zero-mean the input matrix to derive X.; (b) compute C from Eq. 2; (¢) compute
the eigenvalues/vectors of C and pick the first k. We assume that C can fit in memory: it needs M?
cells, where M is the number of columns/products, which should typically be on the order of hundreds
or thousands, for real applications. Under this assumption, we can compute the column averages and
the covariance matrix with a single-pass over the N (=~ millions) of rows of the given X matrix, using
the algorithm of Figure 2(a).

Once we have the covariance matrix C in memory, we can use any off-the-shelf eigensystem package
to determine its eigenvalues and eigenvectors, as shown in Fig. 2(b).

In conclusion, our algorithm requires a single pass to compute the column averages and the covariance
matrix. In more detail, it requires O(N) disk operations to read the matrix X and O(N M?) main-
memory operations to build the corresponding covariance matrix C. Since typically the number of
rows is in the hundreds of thousands (e.g., sales, or customers), and the number of columns in the
hundreds (e.g., products, or patient symptoms), our algorithm of Fig. 2 is very efficient. Notice that the
algorithms of [3] require more than one pass over the dataset in an attempt to find large itemsets. Also
notice that the O(M?) factor for the eigensystem computation is negligible, compared to the O(N M?)
operations needed to build the covariance matrix, since we assume that NV > M.



/* input: training set X on disk */
/* output: covariance matrix C */
for j :=1 to M do
colavgs[j]l — 0;
for 1 := 1 to M do
C[jI[1] « o;
for i :=1 to N do

for j :=1 to M do
colavgs[jl += X[il1[j1;
for 1 :=1 to M do
CI[j1M1]1 += X[i1[j1*X[il[1];
for j :=1 to M do
colavgs[jl /= N;
for j :=1 to M do
for 1 :=1 to M do
C[j1[1] -= N % colavgs[j] * colavgs[1];

Read 2th row of X from disk (X[i][1],...,X[i1[M]);

input: covariance matrix C in main
memory

output: eigenvectors vi,...,vy (ie.,
the PCs)

compute eigensystem:
{vi,..., v} «— eigenvectors(C);
{A,..., A} — eigenvalues(C);

sort v; according to the
eigenvalues;

choose k based on Eq. 1;
return the k largest

eigenvectors;

complexity: O(M?)

(a)

(b)

Figure 2: Pseudocode for efficient computing of the PCA: (a) single-pass over data matrix and (b)
eigensystem computation

4.2 Measuring Goodness: the “Guessing Error”

The association rule mining literature has not defined a criterion to assess the “goodness”, or accuracy,
of a set of discovered rules. We propose a remedy, through the notion of the “guessing error”. The
fundamental requirement is that the given set of rules R allow for estimations of missing values in a
given record/row.

The question is: how good is a set of rules R for a data matrix X? Let’s consider a specific row (=
customer) x; of the matrix, and let’s pretend that the j-th attribute is hidden from us (i.e., the amount
spend on the j-th product, e.g., bread). Thanks to R and the rest of the values ;,, (m # j), we are
able to estimate the missing value as &;;. The guessing error for this specific cell (7, j)is ;; — ;5.

Definition 1 The guessing error for a set of rules R on a data matriz X is defined as the root mean
square of the guessing errors of the individual cells, that is

| N M
RMS = W;ZJ:(%] —25)? (3)

More specifically, we also define it as the single-hole guessing error RMS;, exactly because we allowed
only a single hole at a time. The generalization to the h-hole guessing error RMSy, is straightforward.

We have not yet discussed how the set of rules R was derived. Using a practice that is common
in Machine Learning, we can use a portion Xy..;, of the data set X to derive the rules R (“training
set”), and some other portion X;., of the data set X to compute the guessing error (“testing set”).
The details of the choice of training and testing sets is orthogonal to our definition, and outside the
scope of this work, since they have been extensively examined in the machine learning and classification



literature [17]. A reasonable choice is to use 90% of the original data matrix for training and the
remaining 10% for testing. Another possibility is the use the entire data matrix for both training and
testing. In this paper, we report only the results the former choice because the two choices above gave
very similar results.

The ability to measure the goodness of a set of rules R for a given testing dataset Y is very important,
for developers of data-mining products and for end-users alike:

o For developers, it allows benchmarking and comparison with competing products and designs: a
low “guessing error” over a variety of input matrices indicates a good product.

o For end-users that use a given product on a specific dataset, low “guessing error” implies that the
derived rules have captured the essence of this dataset, and that they can be used for estimation
of truly unknown values with more confidence.

We would like to highlight that the definition of the “guessing error” can be applied to any type
of rules, as long as they can do estimation of hidden values. In the next subsection we focus on our
proposed linear rules, and show how to use them to obtain such estimates.

4.3 Determining Hidden and Unknown Values

Here we illustrate (sketch) the algorithm for determining unknown values of the data matrix. If we
can reconstruct holes, then we can find hidden values or forecast future values. This framework is
also applicable to ‘what-if scenarios” where we can specify some of the values (‘ What if the demand for
Cheerios doubles?’) and then forecast the effect on other attributes (‘Then the demand for milk will
double.”). In addition, it can be used to discover outliers by hiding a cell value, reconstructing it, and
comparing the reconstructed value to the hidden value. The value is an outlier when the value predicted
is significantly different from the existing hidden value.

Once the user has specified partial knowledge from a transaction (e.g., the dollar amounts spent by a
new customer, for some products, are given), the set of unknowns H are determined by the k PCs that
have been kept. The geometric intuition is the following: the PCs form a k-dimensional hyper-plane in
M-space, the “PC-hyperplane”, on or close to which the data points lie. The h holes result in an h-
dimensional hyper-plane in M-space, the “feasible solution space”, on which the solution is constrained.
We want to find a point that definitely agrees with our given partial data (“feasible solution space”),
and is as close to (or exactly on) the “PC-hyperplane”. Figure 3(a) illustrates the case in the simplest
possible form: we have M =2 products, k=1 PC, and h=1 hole. Namely, we know (a) that a customer
spends the given amount on bread and (b) that most of our previous customers fall on or close to the
line defined by the first PC. We want to find the amount spent on butter (the hole). The intersection of
“feasible locations” (vertical dashed line) and “expected locations” (solid diagonal line) gives our best
prediction for the 2-d point that corresponds to that sale; the value on the “butter” axis, labeled as
“guess” is our proposed estimate for the required amount spent on butter.

The two hyper-planes correspond to linear equations, which are presented in Appendix A. There are
three possibilities regarding their intersection, all of which are illustrated in Fig. 3-4:

CASE 1: (EXACTLY-SPECIFIED) The two hyper-planes intersect at a point. This occurs when



(k+h) = M. Here the respective linear equations have an exact solution. Figure 3(a) illustrates
an example in M = 2 dimensions, for A = 1, hole and cutoff £ = 1 principal component.

CASE 2: (OVER-SPECIFIED) The two hyper-planes do not intersect. This occurs when (k+h) < M.
The respective equations are overdetermined, and the closest distance between them is chosen
for the solution. Figure 3(b) illustrates an example in M = 3 dimensions, for b = 1 hole and
cutoff £ = 2.

CASE 3: (UNDER-SPECIFIED) The intersection of the two hyper-planes forms a (min(k, h) — 1)-
dimensional hyper-plane. This occurs when (k4 h) > M. The respective equations are under-
determined. Among the infinite solutions, we propose to keep the one that needs the fewest
eigenvectors. Thus, we ignore (k+ h) — M PCs to make the system exactly-specified, and then
solve it using CASE 1. Figure 4 illustrates an example in M = 3 dimensions, for A = 2 holes
and cutoff k = 2.

butter 4

butter 4 N, _ expected

“4— expected locations

butter [ - — = —— == - —— — o g gUeSS
guess
PC, I
}« feasible locations
o g !
o’ |
|
] >
f bread
Given value
(a) exactly-specified (b) over-specified

Figure 3: Two of the three possible cases: exactly defined, and over-specified

5 Experiments

We ran three sets of experiments. The first was to investigate the prediction accuracy achieved by the
proposed PCA method compared to the straightforward competitor; the second was to examine the
stability of PCA in estimating more than one simultaneous hole; the last was to see how our method
scales up for large datasets.

Methods: We compared PCA with a straightforward technique for predicting values, named ‘col-
avgs’: for a given hole, use the respective column average from the training set. Note that ‘col-avgs’ is
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Figure 4: The last possible case: under-specified.

identically the same as if we applied PCA with k£ = 0 eigenvalues. We cannot compare PCA with any
association-based methods because, as we argue in Sec. 6.3, association-based methods do not lead to
prediction of missing/hidden/corrupted values.

Error Measure: We use the RMS;, “guessing error” described in Sec. 4.2.

Datasets: We ran our experiments on a variety of real datasets, described next. Sec. 6.1 displays
scatter-plots of them.

e ‘nba’ (459 x 12) - NBA statistics from the 1991-92 season, including minutes played, field goals,
rebounds, and fouls;

o ‘baseball’ (1574 x 17) - batting statistics from major league baseball for four seasons; fields
include batting average, at-bats, hits, home runs, and stolen bases;
available at www.usatoday.com/sports/baseball/sbstats.htm;

e ‘abalone’ (4177 x 7) - physical measurements of an invertebrate animal, including length, diam-
eter, and weights; available at www.ics.uci.edu/~mlearn/MLSummary.html.

5.1 Prediction Accuracy

Preliminary to running these experiments, for each dataset we chose 90% of its rows for the training
matrix; the remaining 10% were used as the testing matrix. First we computed the PCs of the training
matrix, along with the column averages of the training matrix for use as the competitor.
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Figure 5: Ratio of guessing error between PCA and ‘col-avgs’ for ‘nba’, ‘baseball’, and ‘abalone’.

Figure 5 shows the RMS4 guessing error for the ‘nba’, ‘baseball’, and ‘abalone’ datasets, normal-

ized by the guessing error attained by ‘col-avgs’. As a frame of reference, we also present the normalized
RMS; of ‘col-avgs’, which is, of course, 100%.

In Fig. 6, we show the RMS;, for the ‘nba’ and ‘baseball’ datasets, for h € {1,2,3,4,5} holes. The
results for the ‘abalone’ dataset were similar, and are omitted for brevity. Note that the guessing error
is relatively stable for up to several simultaneous holes.

5.2 Scale-up

Figure 7 demonstrates the scale-up of our algorithm. The vertical axis is the average actual computation
time to determine the principal components (in seconds), as measured by the time utility of UNIX™
The horizontal axis is the number of data matrix rows V. Since all of our datasets were relatively small
(N < 5000), we used a 100,000 x 100 data matrix created using the Quest Synthetic Data Generation
Tool available at www.almaden.ibm.com/cs/quest/syndata.html. The methods were implemented in 'C’
and ’Splus’ under UNIX™ | The experiments ran on a dedicated Sun SPARCstation 5 with 32Mb of
main memory, running SunOS 4.1.3. The disk drive was a FUJITSU M22665-512 model ‘CRANEL-
M2266SA’ with minimum positioning time of 8.3 ms and maximum positioning time of 30ms.

The plot is close to a straight line, as expected. The y-intercept of the line is the time to compute
the eigensystem. Notice that it seems negligible.

6 Discussion

Here we show the visualization capabilities that PCA offers by presenting 2-d scatter-plots of the datasets
used. The plots also provide a sense of how well-described they are by only a few linear rules. Using the

10
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Figure 6: Guessing error vs. number of holes (1-5) for the ‘nba’ and ‘baseball’ datasets, ‘col-avgs’ vs.

PCA.

‘nba’ dataset, we demonstrate how these linear rules can be interpreted, with references to the plots.
Finally, we present a qualitative comparison of the linear rules of PCA versus general association rules
that were the subject of [22].

6.1 Visualization

The application of PCA for visualization has been well-studied, and is well known in the pattern
classification and image processing literature as the Karhunen-Loeve (KL) transform [8]. Recall that
PCA identifies the axes of greatest variation. By projecting the points onto the top two or three of these
axes (i.e., the eigenvectors associated with the largest eigenvalues), the points can be plotted to give an
idea of the density and structure of the dataset. For example, Figure 8 shows a scatter-plot of a dataset
of ‘nba’ which originally included the statistics of N=459 players for M =12 attributes and has been
reduced to 2-dimensional PC space (i.e., two principal components). In (a), the x-axis corresponds to
the first (and strongest) principal component; the y-axis corresponds to the second principal component.
In (b), the x-axis corresponds to the second PC and the y-axis corresponds to the third PC. Most of the
points are very close to the horizontal axis, implying that they all closely follow the first eigenvector and
are considerably linear. The plot also shows that many of the attributes are correlated with one another,
such as field goals and minutes played. There are two points that are clearly outliers: (3000,971) and
(2100, —1296), corresponding to Michael Jordan and Dennis Rodman, respectively. Figure 9 shows 2-d
plots for (a) ‘baseball’ and (b) ‘abalone’.

6.2 Interpretation of the Linear Rules

11
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Figure 7: Scale-up: time to compute PCA versus db size N in records.

In this section, we illustrate by example how principle components can be interpreted as the under-
lying factors that govern a dataset. Table 2 presents the first three principal components (PCy, PCy,
and PCs) for the ‘nba’ dataset (see Fig. 8), after truncating small row values (specifically, cells whose
absolute value is less than half the maximum absolute row cell value). For example, PC; was truncated
to

(.808,~0,...,.406,~0,...,~0)

By drawing on common knowledge of basketball and by examining these principal components, we
conjecture the following: PCy represents “court action”, separating the starters from those who sit on
the bench, and gives a 0.808:0.406 = 2:1 ratio. This is a linear rule with the obvious interpretation:
the average player scores 1 point for every 2 minutes of play. (that is, roughly 1 basket for every 4
minutes played). According to PCy, Jordan was across-the-board the most active player that season

field PC; PG, PCs
minutes played 808 —.4
field goals

goal attempts
free throws
throws attempted
blocked shots

fouls

points 406 199
offensive rebounds

total rebounds —.489 .602
assists —.486
steals —.07

Table 2: Relative values of the PCs from ‘nba’.

12
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Figure 8: A scatter plot of ‘nba’: two 2-d orthogonal views.

in almost every statistic. PCy shows that the number of offense rebounds is negatively correlated with
points in a 0.489:0.199 &~ 2.45:1 ratio. Intuitively, this is because a goal attempt makes it difficult for
a player to get in a good position for rebounding, and vice versa. Thus, PC; roughly represents “field
position”, separating the guards, who get the most opportunities to shoot, from the forwards, who are
more likely to be rebounders. For example, in Fig. 8, we see the extremes among active players: star
shooting guard and Michael Jordan at one end with 2404 points and 91 rebounds, and power forward
(and excellent rebounder) Dennis Rodman at the other with 800 points and 523 rebounds. PCs says
that rebounds are negatively correlated with assists and steals. Typically, tall players make better
rebounders because they can reach high and short players are better at assists and steals because they
can move fast. Thus, PC3 roughly represents “height”, with Mugsy Bogues (5’3”) and Karl Malone
(6’87) at opposite extremes. (See Figure 8(b)).

6.3 Linear Rules vs. Association Rules

Since we propose a completely different paradigm of rules, namely, linear rules as opposed to association
rules, it is important to discuss the qualitative differences between the two. Specifically, we are concerned
with the following types of rules:

¢ Boolean association rules [2]: e.g., {bread, milk} = butter
e quantitative association rules [22]: e.g., < bread : [2 — 5] > = < butter : [1 —2] >

o linear rules: e.g., ratio of spendings bread:butter = 2:3
Boolean association rules have the advantages that they are easy to interpret and relatively easy
to implement. On the weak side, a given data matrix X with, say, amounts spent per customer per

product, is converted to a binary matrix by treating non-zero amounts as plain “1”s. This simplifies
the data mining algorithms but tends to lose valuable information.

13



scatter plot of ‘baseball’ scatter plot of ‘abalone’
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Figure 9: Scatter plots of (a) ‘baseball’ and (b) ‘abalone’ in 2-d PC space.

Quantitative association rule algorithms perform an important step to retain the above information.
Figure 10(a) illustrates how these rules might work for a fictitious dataset with a few customers (points)
and M = 2 products only, namely, “bread” and “butter”. In this dataset, the quantitative association
rules will derive rules that corresponds to the dashed rectangles of the figure. For example, the first
two lower-left rectangles will yield the rules

<bread:[1—3]> = < butter:[.5-25]>
<bread:[3—5]> = < butter:[2-3]>

Linear rules, for the same setting of Figure 10 and with £ = 1 PC, will fit the best possible line through
the dataset; its unit vector is exactly the first PC of the given data matrix. Thus, the corresponding
rule will look like

bread : butter = .81 : .58

Intuitively, we conjecture that the quantitative association rules should supersede the Boolean associa-
tion ones, which are not discussed further. Comparing the linear rules with the quantitative association
rules, we identify the following strong points for each approach.

The advantage for the quantitative association rules are

e They will be more suitable if the data points form clusters.

e They have been applied to categorical data, although similar extensions of PCA are discussed
in [13].

For the linear rules, the advantages are the following:
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They achieve more compact descriptions, if the data points are linearly correlated, as in Figure 10,
or as in the real datasets that we saw earlier. In such cases, a single linear rule captures the cor-
relations, while several minimum bounding rectangles are needed by the quantitative association
rules to convey the same information;

They can perform extrapolations and predictions: For example, in Figure 10, suppose that we
are given that a customer bought $8.50 of bread; how much butter is s/he expected to buy? The
linear rules will predict $6.10 on butter, as Figure 10(b) illustrates. The quantitative association
rules have no rule that can fire, exactly because the vertical line of “feasible solutions” intersects
none of the bounding rectangles. Thus they are unable to make a prediction;

Their derivation requires a single pass over the dataset;

They are easily implemented: thanks to highly fine-tuned eigensystem packages, the remaining
programming effort is minimal. As an indication, Appendix B lists the code for the Karhunen-
Loeve transform (=PCA), in mathematica. Notice that, excluding comments and blank lines, it
spans 9 lines! The code is available at available at ftp://olympos.cs.umd.edu/pub/SRC/k1.m.

?
A
| 7
EZ | 5 (856.1
= N o
85 U : ES : PCl
C e o! | o |
o el I o * |
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$spentonbread  given $spentonbread  given
(a) Quantitative (b) Linear Rules

Figure 10: Illustration of Rules on a fictitious dataset of sales on bread and butter: (a) quantitative
association rules; (b) linear rules. The “given” entry asks for an estimation for butter, for the given

amount spent on bread

7 Conclusions

We have proposed a completely different type of rules as the target of data mining efforts, namely, linear
rules. These rules have significant advantages over Boolean and quantitative association rules:

e They lead to a natural measure, the “guessing error”, which can quantify how good a given set of
rules is;
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e They can estimate one or more missing/hidden/corrupted values, when a new data record is given;
thus, they can also be used in forecasting, for ‘what-if’ scenarios, and for detecting outliers;

e They are based on the time-tested tool of Principal Component Analysis (PCA), which is the
optimal way to perform dimensionality reduction [13];

e They are easy to implement: the most difficult part of our method is the solution of an eigensystem
for which reliable packages and/or source code are widely available;

o They are fast and scalable, requiring a single pass over the data matrix, and growing linearly on
the largest dimension of the matrix, presumably the number N of rows (customers);

e They give visualization for free, thanks to the dimensionality reduction properties of PCA.
We discussed how to interpret linear rules and what their qualitative differences are from the Associa-

tion Rules. Finally, we presented experiments on several real datasets, which showed that the proposed
linear rules can achieve up to 5 times smaller guessing error than its competitor.

Future research could focus on further applications of linear rules and PCA for data mining applica-
tions, such as for categorical data, outlier detection, and so on.
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A Linear Algebra Definitions and Proofs
Here we give the formal definition of eigenvalues and eigenvectors:

Definition 2 For a square n X n matriz S, a unit vector u and a scalar X\ that satisfy
Sxu=AXxu (4)

are called an eigenvector and its associated eigenvalue, respectively, of the matriz S.

Next, we give the algorithm to determine hidden and unknown values. We start with some preliminary
definitions.

Definition 3 The complement of a set A is denoted A°.

Definition 4 An h-hole row vector by is defined as a vector with holes (denoted with “?”s) at indices
given in H.

An example of a 5 x 1 2-hole row vector is the following:

b{2,4} = [b17?7b37?7b5] (5)

Definition 5 An (M — h) X M elimination matriz Ev is defined as an M x M identity matriz with
h = |H| rows removed, where the row indices are given in the set H.

An example of a 3 x 5 elimination matrix is the following:

(6)

o o O
O = O
o o O
_ o O

1
Epa=10
0

An elimination matrix is very useful in helping us pick and choose entries from vectors. For example,

we can eliminate the “?”s from by 4 as follows:
by
100 00 ? by
Eayxblyy =100 1 0 0| x|b|=]bs (7)
00 001 ? bs
bs

Following is pseudocode for filling in the holes, which requires the use of several auxiliary vectors:
b’, Xconcept, d. For brevity, we omit the physical intuition behind them.

/* input: by, a 1 X M row vector with holes */
/* output: b, a M X1 row vector with holes filled */

17



b’ — EH X b;_(;

V' — Ey xV;

solve V' X Xeoneept = b’ £0T Xeoneept
d—V X Xconcept;

b — b x [Exe]' +d x [En]';

g b W N -

In step 3, the equation V' X Xconeept = b’, where there are (M — h) equations and k unknowns, can
either be exactly-specified, over-specified, or under-specified:

CASE 1: (EXACTLY-SPECIFIED) This occurs when (k4 h) = M.

Here the respective linear equations have an exact solution. In this case,
Xconcept = (V/)_l X b/ (8)

CASE 2: (OVER-SPECIFIED) This occurs when (k+h) < M.
Here the system has no solution, so we find a least-squares solution for X.,nceps based on the
Moore-Penrose pseudo-inverse of V'. This uses the singular value decomposition (see [16]) of
A%
V' =R x diag(u;) x S (9)

Since V' is singular, no inverse exists, but we can find a pseudo-inverse:
[V = S x diag(1/p;) x R (10)

and, thus,
Xconcept = [V/]_l X b’ (11)

CASE 3: (UNDER-SPECIFIED) This occurs when (kK + h) > M.
Here there are an infinite number of solutions. We propose to reduce the solution by ‘throwing
away’ (k+ h) — M PCs to make the system exact, and then solve using CASE 1.

B Karhunen-Loeve Code

(* given a matrix mat_ with $n$ vectors of $m$ attributes,
it creates a matrix with $n$ vectors and their
first $k$ most ’important’ attributes
(ie., the K-L expansions of these $n$ vectors)
*)
KLexpansion[ mat_, k_:2] := mat . Transposel[ KL[mat, k] J;

(* given a matrix with $n$ vectors of $m$ dimensions,
computes the first $k$ singular vectors,
ie., the axes of the first $k$ Karhunen-Loeve expansion
*)

KL[ mat_ , k_:2 ]:= Module[

18



{n,m, avgvec, newmat,i,
val, vec 1},

{n,m} = Dimensions[mat];
avgvec = Apply[ Plus, mat] / n //N;

(¥ translate vectors, so the mean is zero *)
newmat = Table[ mat[[i]] - avgvec , {i,1,n} 1;

{val, vec} = Eigensystem[ Transpose[newmat] . newmat J;

vec[[ Rangel1,k] 1]
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