Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dependence Structure for Levy Processes and Its Application in Finance

    Thumbnail
    View/Open
    umi-umd-5566.pdf (930.4Kb)
    No. of downloads: 1534

    Date
    2008-06-06
    Author
    chen, qiwen
    Advisor
    Madan, Dilip B
    Metadata
    Show full item record
    Abstract
    In this paper, we introduce DSPMD, discretely sampled process with pre-specified marginals and pre-specified dependence, and SRLMD, series representation for Levy process with pre-specified marginals and pre-specified dependence. In the DSPMD for Levy processes, some regular copula can be extracted from the discrete samples of a joint process so as to correlate discrete samples on the pre-specified marginal processes. We prove that if the pre-specified marginals and pre-specified joint processes are some Levy processes, the DSPMD converges to some Levy process. Compared with Levy copula, proposed by Tankov, DSPMD offers easy access to statistical properties of the dependence structure through the copula on the random variable level, which is difficult in Levy copula. It also comes with a simulation algorithm that overcomes the first component bias effect of the series representation algorithm proposed by Tankov. As an application and example of DSPMD for Levy process, we examined the statistical explanatory power of VG copula implied by the multidimensional VG processes. Several baskets of equities and indices are considered. Some basket options are priced using risk neutral marginals and statistical dependence. SRLMD is based on Rosinski's series representation and Sklar's Theorem for Levy copula. Starting with a series representation of a multi-dimensional Levy process, we transform each term in the series component-wise to new jumps satisfying pre-specified jump measure. The resulting series is the SRLMD, which is an exact Levy process, not an approximation. We give an example of alpha-stable Levy copula which has the advantage over what Tankov proposed in the follow aspects: First, it is naturally high dimensional. Second, the structure is so general that it allows from complete dependence to complete independence and can have any regular copula behavior built in. Thirdly, and most importantly, in simulation, the truncation error can be well controlled and simulation efficiency does not deteriorate in nearly independence case. For compound Poisson processes as pre-specified marginals, zero truncation error can be attained.
    URI
    http://hdl.handle.net/1903/8512
    Collections
    • Computer Science Theses and Dissertations
    • Mathematics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility