Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fast Nearest Neighbor Search in Medical Image Databases

    Thumbnail
    View/Open
    CS-TR-3613.ps (1.679Mb)
    No. of downloads: 741

    Auto-generated copy of CS-TR-3613.ps (316.9Kb)
    No. of downloads: 1400

    Date
    1998-10-15
    Author
    Korn, Flip
    Sidiropoulos, Nikolaos
    Faloutsos, Christos
    Siegel, Eliot
    Protopapas, Zenon
    Metadata
    Show full item record
    Abstract
    We examine the problem of finding similar tumor shapes. Starting from a natural similarity function (the so-called `max morpholog- ical distance'), we showed how to lower-bound it and how to search for nearest neighbors in large collections of tumor-like shapes. Specifically, we used state-of-the-art concepts from morphology, namely the `pattern spectrum' of a shape, to map each shape to a point in $n$-dimensional space. Following \cite{Faloutsos94Fast,Jagadish91Retrieval}, we organized the $n$-d points in an R-tree. We showed that the $L_infty$ (= max) norm in the $n$-d space lower-bounds the actual distance. This guarantees no false dismissals for range queries. In addition, we developed a nearest-neighbor algorithm that also guarantees no false dismissals. Finally, we implemented the method, and we tested it against a testbed of realistic tumor shapes, using an established tumor- growth model of Murray Eden \cite{Eden:61}. The experiments showed that our method is up to 27 times faster than straightfor- ward sequential scanning. (Also cross-referenced as UMIACS-TR-96-17)
    URI
    http://hdl.handle.net/1903/805
    Collections
    • Technical Reports from UMIACS
    • Technical Reports of the Computer Science Department

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility