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1 IntroductionThis paper proposes an algorithm which rapidly searches for \similar shapes". Such an algorithmwould have broad applications in electronic commerce (e.g., `�nd shapes similar to a screw-driver'),photo-journalism [20], etc., but would be particularly useful in medical imaging. During the pasttwenty years, the development of new modalities such as Computed Tomography (CT) and MagneticResonance Imaging (MRI) have substantially increased the number and complexity of images presentedto radiologists and other physicians. Additionally, the recent introduction of large scale PACS (PictureArchival and Communication Systems) has resulted in the creation of large digital image databases.A typical radiology department currently generates between 100,000 and 10,000,000 such images peryear. A �lmless imaging department such as the Baltimore VA Medical Center (VAMC) generatesapproximately 1.5 terabytes of image data annually.An algorithm that would be able to search for similar shapes rapidly would have a number of usefulapplications in diagnostic imaging. Both \experts" such as radiologists and non-experts could use sucha system for the following tasks:1. Diagnosis/Classi�cation: distinguish between a primary or metastatic (secondary) tumor basedon shape and degree of change in shape over time correlating this with data about diagnosesand symptoms. Computer-aided diagnosis will be especially useful in increasing the reliability ofdetection of pathology, particularly when overlapping structures create a distraction or in othercases where limitations of the human visual system hamper diagnosis [37].2. Forecasting/Time Evolution Analysis: predict the degree of aggressiveness of the pathologic pro-cess or try to distinguish a particular histology based on patterns of change in shape. In thissetting, we would like to �nd tumors in the database with the similar history as the currenttumor.3. Data Mining: detect correlations among shapes, diagnoses, symptoms and demographic data, andthus form and test hypotheses about the development and treatment of tumors.In all of the above tasks, the central problem is similarity matching: `�nd tumors that are similarto a given pattern' (including shape, shape changes, and demographic patient data). We mainly focuson matching similar shapes. In section 6, we discuss how our approach can be naturally extended tohandle more complicated queries.Some terminology is necessary. Following [19], we distinguish between (a) range queries (e.g., �ndshapes that are within distance � from the desirable query shape) and (b) nearest neighbor queries (e.g.,�nd the �rst k closest shapes to the query shape) An orthogonal axis of classi�cation distinguishesbetween whole-matching and sub-pattern matching: In whole-matching queries, the user speci�es an2



S � S query image and requires images of S � S that are similar; in sub-pattern matching queries, theuser speci�es only a small portion and requires all the (arbitrary-size) images that contain a similarpatternIn this work we focus on whole-matching, because this is the stepping stone for the sub-patternmatching, and all the problems listed above, as discussed in section 6.For the whole matching problem, there are two major challenges:� How to measure the dis-similarity/distance between two shapes. In the tumor application, as wellas in most other shape applications, the distance function should be invariant to rotation andtranslation. Moreover, we would like a function that pays attention to details at several scales, aswe explain later.� Given such a distance function, how can we do better than sequential scanning of the wholedatabase? This faster method, however, should not compromise the correctness: it should haveno false dismissals; that is, it should return exactly the same response set as sequential scanningwould do.Next we provide solutions to the above two challenges. This paper is organized as follows: Section 2gives the survey. Section 3 gives an introduction to morphology and tumor-shape modeling. Section 4presents our main result: the lower-bounding of the `max-morphological' distance, as well as a k-nearestneighbor algorithm, without false dismissals. Section 5 gives the experiments. Section 6 discusses howto use the proposed algorithms for more general problems. Section 7 gives the conclusions.2 Survey2.1 Multimedia IndexingThe state of the art in multimedia indexing is based on feature extraction [36, 19]. The idea is to extractn numerical features from the objects of interest, mapping them into points in n-dimensional space.Then, any multi-dimensional indexing method can be used to organize, cluster and e�ciently searchthe resulting points. Such methods are traditionally called Spatial Access Methods (SAMs). A query ofthe form �nd objects similar to the query object Q becomes the query �nd points that are close to thequery point q, and thus becomes a range query or nearest neighbor query. Thus, we can use the SAMto identify quickly the qualifying points, and, from them, the corresponding objects. Following [1], wecall the resulting index as the `F-index' (for `feature index'). This general approach has been used inseveral settings, such as searching for similar time-sequences [1] (e.g., trying to �nd quickly stock pricesthat move like MacDonalds), color images [18, 20], etc.The major challenge is to �nd feature extraction functions that preserve the dis-similarity/distancebetween the objects as much as possible. In [1, 19] we showed that the F-index method can guarantee3



that there will not be any false dismissals, if the actual distance is lower-bounded by the distance infeature space.Mathematically, let O1 and O2 be two objects (e.g., time sequences, bitmaps of tumors, etc.) withdistance function Dobject() (e.g., the sum of squared errors) and F (O1), F (O2) be their feature vectors(e.g., their �rst few Fourier coe�cients), with distance function Dfeature() (e.g., the Euclidean distance,again). Then we have:Lemma 1 (Lower-Bounding) To guarantee no false dismissals for range queries, the feature extrac-tion function F () should satisfy the following formula:Dfeature(F (O1); F (O2)) � Dobject(O1; O2) (1)Proof: In [19].Thus, the search for range queries involves two steps. For a query object Q with tolerance �, we1. Discard quickly those objects whose feature vectors are too far away. That is,we retrieve the objects X such that Dfeature(F (Q); F (E))< �.2. Apply Dobject() to discard the false alarms (the clean-up stage).2.2 Spatial access methodsSince we rely on spatial access methods as the eventual indexing mechanism, we give a brief survey ofthem. These methods fall in the following broad classes: methods that transform rectangles into pointsin a higher dimensionality space [32]; methods that use linear quadtrees [23] [3] or, equivalently, thez-ordering [51] or other space �lling curves [17] [35]; and �nally, methods based on trees (R-tree [27],k-d-trees [6], k-d-B-trees [56], hB-trees [41], cell-trees [26], etc.)One of the most promising approaches in the last class is the R-tree [27] and its numerous variants(Greene's variation [25], the R+-tree [58], R-trees using Minimum Bounding Polygons [34], the R�-tree [5], the Hilbert R-tree [38], etc.). We use R-trees, because they have already been used successfullyfor high-dimensionality spaces (10-20 dimensions [18]); in contrast, grid-�les and linear quadtrees maysu�er from the `dimensionality curse'.2.3 Tumor growth modelsOur target class is a collection of images of tumor-like shapes. As a preliminary testbed, we use arti�cialdata generated by a certain stochastic model of simulated tumor growth. Our particular model is adiscrete-time version of Eden's tumor growth model [15], whose idea is illustrated in Figures 1 and 2.At time t=0, only one grid-cell is `infected'; each infected grid-cell may infect its four non-diagonalneighbors with equal probability p at each time-tick.4



On the basic Eden model, we have added the notion of East-West/North-South bias, to capturethe e�ects of anisotropic growth patterns, due to anisotropies in the surrounding tissue (e.g., lesionsshaped by their location within the lung, breast, or liver.) Thus, in our model, an infected grid-cell hasprobability pNS to infect its North and South neighbors, and probability pEW to infect its East/Westones, with pNS not necessarily equal to pEW .
23 1

4 45

6

6

6

6

7

8

8 9

99

9 9 9Figure 1: Lattice at t = 9. The infection time of each infected cell is marked.t = 1 t = 5 t = 10 t = 25 t = 50 t = 100Figure 2: Initial seed (left column) and snapshots of tumor at later time steps, with p = :7The Eden model is the simplest of a hierarchy of models: in increasing generality, we have theWilliams-Bjerkness model [62], the Contact Process [31], and the Interacting Particle Systems [13, 40].See [21, 30, 55, 10] for a more comprehensive survey on tumor growth models.2.4 Shape Representation and MatchingShape representation is an interesting enough problem to have attracted many researchers and generateda rich array of approaches [52]. There are two closely related problems: (a) how to describe a singleshape compactly and (b) how to measure the di�erence of two shapes, so that it corresponds to thehumanly perceived di�erence.With respect to representations, the most popular methods are:� representation through `landmarks': for example, in order to match two faces, information aboutthe eyes, nose, etc., are extracted manually [4] or automatically. Thus, a shape is represented by aset of landmarks and their attributes (area, perimeter, relative position etc). Again, the distancebetween two images is the sum of the penalties for the di�erences of the landmarks.5



� representation through numerical vectors, such as (a) samples of the `turning angle' plot [33] (thatis, the slope of the tangent at each point of the periphery, as a function of the distance traveled onthe periphery from a designated starting point) (b) some coe�cients of the 2-d Discrete FourierTransform (DFT), or, more recently, the (2-d) Discrete Wavelet Transform [43] or (c) the �rst fewmoments of inertia [20, 18]. In these cases, we typically use the (weighted) Euclidean distance ofthe vectors.� representation through a simpler shape, such as polygonalization [24, 50, 54, 60, 39] and Mathe-matical Morphology [63, 47, 44, 11, 7], which we shall examine in detail next.Among them, representations based on morphology are very promising, because they have two verydesirable characteristics for our applications:� they can be easily designed to be essentially invariant to rotation and translation (= rigid motions).� they are inherently `multi-scale', and thus they can highlight di�erences at several scales, as weexplain next.The multi-scale characteristic is important, especially for tumors, because the `ruggedness' of theperiphery of a tumor contains a lot of information about it [9]. Thus, given two tumor-like shapes, wewould like to examine di�erences at several scales before we pronounce the two shapes as `similar'.Even for general shapes, there exists substantial evidence that scale-space behavior is an importantand highly discriminating shape \signature" [61, 42, 8].3 Introduction to MorphologyOur goal is to choose a distance function between shapes which will be invariant to translation androtation, and which will `give attention' to all levels of detail. One such function is founded on ideasfrom the �eld of Mathematical Morphology. See [12] for a very accessible introduction. Next, we presentthe de�nitions and concepts that we need for our application. Table 3 lists the symbols and theirde�nitions.Some de�nitions are in order: Consider black-and-white images in 2-d space; the `white' points ofan image are a subset of the 2-d address space, while the background is, by convention, black. Moreformally, let X (the \shape space") be a set of compact subsets of <2, and R be the group of rigidmotions R : X 7! X .3.1 Introduction to MorphologyMathematical Morphology is a rich quantitative theory of shape, which incorporates a multiscale com-ponent. It has been developed mainly by Matheron [48, 49], Serra [59, 14], and their collaborators.6



Symbol De�nition< the set of reals<+ the set of non-negative realsZ the set of integersZ+ the set of non-negative integers� the operator for dilation	 the operator for erosion� the operator for Morphological Opening� the operator for Morphological ClosingjX j area of a shape XfHm (X) a smoothed version of X at scale n wrt structural elt HyHX the size-distribution (� cumulative pattern spectrum) of X wrt structural elt Hd(�; �) the set-di�erence distance between two shapesd�(�; �) the 
oating shape distanced1(�; �) the max-morphological distance between two shapes�1(�; �) the max-granulometric distance between two shapesa response set size (number of actual hits)N database size (number of images)n number of features in feature spaceTable 1: Symbol tableSince the 1980's, morphology and its applications have become extremely popular.In mathematical morphology, mappings are de�ned in terms of a structural element, a \small" prim-itive shape (set of points) which interacts with the input image to transform it, and, in the process,extract useful information about its geometrical and topological structure. The basic morphologicaloperators are: �;	; �; � (dilation, erosion, Morphological Opening, and Closing, respectively), and theyare de�ned as follows.Let Xh denote the translate of shape X by the vector h, and let Hs denote the symmetric of shapeH with respect to the origin: Hs = f�h j h 2 Hg (2)De�nition 1 The dilation, X �Hs, of a shape X � <2 by a structural element H, is de�ned asX �Hs = [h2HX�h = n(x; y) 2 <2 j H(x;y) \X 6= ;o (3)7



Figure 3 shows a `butter
y' shape X , dilated by the unit circle H . Intuitively, a dilation `blows-up'the original shape X by tracing its perimeter (and all the internal points) with a `brush' of foot H .We also use mH; m 2 Z+ to denote H �H � � � ��H (m� 1 times), i.e., a structural element of sizem. Intuitively, if the structural element H is the unit ball, then the shape mH is a ball of radius m.De�nition 2 The erosion, X 	Hs, of a shape X � <2 by a structural element H, is de�ned asX 	Hs = \h2HX�h = n(x; y) 2 <2 j H(x;y) � Xo (4)Figure 3 shows the butter
y shapeX eroded by the unit circle H , which is a dilation of the complementof X . Intuitively, an erosion deletes part of the original shape X by tracing its perimeter with an `eraser'of foot H .Two important composite Morphological operators are opening and closing.De�nition 3 The opening, X �H, of a shape X � <2 by a structural element H, is de�ned as anerosion followed by a dilation: X �H = (X 	Hs)�H (5)Figure 3 shows the opening of shape X . Intuitively, the opening is the set of points that a brushof foot H can reach, when the brush is con�ned inside the shape, and is barely allowed to touch theperiphery of the shape.De�nition 4 The closing, X � H, of a shape X � <2 by a structural element H, is de�ned as adilation followed by an erosion: X �H = (X �Hs)	H (6)Figure 3 shows the closing of shape X , which is the opening of the complement of X . Intuitively, theclosing is the set of points that remain after an eraser of foot H sweeps the outside of the dilated X .Thus, the opening by a circle of radius n in e�ect `cuts the corners'; that is, it eliminates the protrudingdetails of the shape X , with radius less than n. Symmetrically, the closing `�lls the concavities' of theappropriate scale.3.2 Granulometries and the Pattern SpectrumThe concept of the Pattern Spectrum as a compact shape-size descriptor has been developed by Maragos[46], based on earlier seminal work on openings of sets in Euclidean spaces by Matheron [48, 49, 28, 29],who called them Granulometries. Serra [59, 14] and his collaborators have used Lebesgue measures ofopenings by a size-parameterized family of structural elements to develop shape-size sensitive measure-ments of shape attributes which they called Size Distributions.8



original dilation erosion opening closing structural elementX X �Hs X 	Hs X �H X �H HFigure 3: Original image (left column) and dilation, erosion, opening, closing, and structural element.De�nition 5 The size distribution yHX of a shape X 2 X , with respect to a structural element H isde�ned as yHX 4= hjfH�M (X)j; � � � ; jfH�1(X)j; jfH0 (X)j; jfH1 (X)j; � � � ; jfHM(X)jiT (7)with fHm (X) 4= 8>>><>>>: X �mH 1 � m < MX m = 0X �mH �M � m � �1 (8)where H is some structural element.Intuitively, jfHm (X)j is the area of a smoothed version of X at scale m, i.e., for jfH0 (X)j is the areaof X , jfH1 (X)j is the area of X �H , etc. In other words, the vector yHX , contains measurements of thearea of X at di�erent scales, or degrees of shape smoothing, thus constituting the size distribution.The pattern spectrum, as discussed by Maragos [46] contains exactly the same information. Itselements are backward di�erences of the size distribution. In other words, the size distribution can bethought of as the `cumulative pattern spectrum'. The intuitive meaning of the pattern spectrum is theamount of detail (= additional area) that the next closing will add, or that the next (larger-radius)opening will subtract. Figure 4 shows the pattern spectrum of a circular disc of radius 5, as well as ofa square of side 10, with respect to a a unit disc structural element H . Notice that the disc has onlyone 'spike', at m=5, while the pattern spectrum of the square has details at several scales. (Of course,the situation would be reversed, if the structural element H was the unit square).The importance of the size distribution and the pattern spectrum is that they summarize importantshape characteristics in the sense that they possess high discriminatory power, as reported in [2, 53].3.3 Distance functionsGiven two shapes X1 and X2, a natural distance function involves penalizing the non-common areas.Formally, 9



circular disc pattern spectrum square pattern spectrumFigure 4: Image and respective pattern spectrum histograms of (a) a circular disc of radius 5, and (b)a square of side 10.De�nition 6 Let d(�; �) denote the area of the symmetric set di�erence distance measure, i.e., forX1; X2 2 X d(X1; X2) = jX1nX2j = jX1 [X2j � jX1 \X2j (9)We can show that d(�; �) is a distance metric over X �X . However, we need a distance function thatallows rotations and translations. This is achieved by requiring that the two shapes are �rst optimallyaligned by allowable motions. Formally, we have a new distance function:De�nition 7 De�ne the 
oating shape distance d�() of two shapes X1 and X2 asd�(X1; X2) = infR2Rd(X1; R(X2)) (10)where R is the set of rigid motions. The process of optimal alignment of two shapes is called registration.The d�() distance is very natural and intuitive; it only fails in one account, namely, to consider detailsat several levels. Figure 5 illustrates the point: X1 is a square, X2 is an identical square, with a linesegment coming out of its left side, and X3 is identical to X1, with a line segment cutting into it. Atthe current scale, the distance d�() among any pair of them is small. For example, if X1 and X2 areoptimally aligned, making the two squares to coincide, then the area of the disjoint part is the areaof the protruding line segment, which is negligible. However, the visual di�erence between the two isnon-negligible. The same is true for X1 and X3. These counter-intuitive results can be remedied byapplying the newly introduced tools of morphology: after applying a closing (see third column), we seethat the protruding line segment in X2 will make its presence more obvious. Similarly, after applyingan opening (second column), the `cut' in X3 will become more obvious.Thus, given any two shapes, each opening and closing will emphasize di�erent details of their di�er-ences, resulting in a di�erent value of d�(). The question is how to combine all these scale-dependentpenalties to arrive at a single number. The solution we propose is to take the maximum di�erence.More formally, 10



original after aftershape opening closingX1X2X3Figure 5: Three di�erent scales of shapes X1, X2 and X3De�nition 8 De�ne the Max Morphological DistancedH1 : X � X 7! <+ (11)as dH1(X1; X2) 4= max�M�m�M d� �fHm (X1); fHm (X2)� (12)with fHm (X) de�ned in Eq. 8.For the remainder we assume some �xed structural element H (e.g., the unit ball), and we drop theseindices.The intuitive meaning of the d1() distance function is the following:� compute d�(), that is take the two shapes X1 and X2, align them optimally, and compute the areaof the disjoint parts� take their closings using a disk of radius 1, 2, ... M ; in each case, compute the d�() of the resultingshapes 11



� do the same for openings, with a disk of radius 1, 2, ... M� pick the maximum di�erence, and report it as the distance of the two shapes.Lemma 2 The function d1 is indeed a distance metric between elements of X .Proof: See Appendix A.4 Problem De�nition - Proposed solutionThe problem we focus on is the design of fast searching methods that will operate on the tumor databaseto locate the most similar object to the query object. The (dis-)similarity is measured by the max-morphological distance (Eq. 12). We focus on both range queries as well as on nearest-neighbor queries.We have three obstacles to overcome:� what features to use (i.e., how to map tumor-shapes into n-d points)� how to prove that the above mapping is contractive, that is, it obeys the Lower-Bounding Lemma(Lemma 1).� how to use the resulting F-index on the feature space, so that we can answer nearest-neighborqueries with respect to the actual distance (as opposed to the distance in feature space)Next we present the proposed solutions to these three problems.4.1 FeaturesOur goal is to derive features that will capture a lot of the shape information, that will be rotationand translation invariant, and that will lead to a feature-distance function that ful�lls the Lower-Bounding Lemma. Given the success of the pattern spectrum as a means to capture shape information[2, 46, 45, 63], we started with its coe�cients as good features. More speci�cally, we use the coe�cientsyX of the size distribution (Eq. 7), which contains exactly the same information as the pattern spectrum.Thus, we `penalize' two shapes for di�erences at several scales. The question is, what is the best wayto combine the penalties of each scale? A natural choice is to pick the maximum among the penalties.This is identical to the L1 norm of the two feature vectors, and it leads to the following distancefunction:De�nition 9 De�ne the Max Granulometric Distance �1() of two shapes X1, X2 as�H1(X1; X2) = max�M�m�M jyX1(m)� yX2(m)j (13)12



4.2 Lower-BoundingOur next challenge is to show that the distance in feature space (i.e., the max-granulometric distance�1()) lower-bounds the actual distance d1(). This is necessary to guarantee no false dismissals.Lemma 3 (Max-Morphological Distance Bounding) The max-granulometric distance �1() lower-bounds the max-morphological distance d1():�1(X1; X2) � d1(X1; X2); 8X1; X2 2 X (14)Proof: Observe that d�(X1; X2) � jjX1j � jX2jj (15)with equality achieved if and only if there exists some rigid motion R 2 R which brings all points inX2 (or X1) in registration with points in X1 (X2, respectively). Thend�(fm(X1); fm(X2)) � jjfm(X1)j � jfm(X2)jj (16)and max�M�m�M d�(fm(X1); fm(X2)) � max�M�m�M jjfm(X1)j � jfm(X2)jj (17)Recall that the left-hand side is the de�nition of d1 and the right-hand side is the de�nition of �1.Thus, the proof is complete. QEDThe latter result guarantees completeness of range queries.By keeping the dimensionality of the spectra space small (sayM = 5 7! 2M+1 = 11 features) we canuse an F-index which, as we show later, results in considerably faster access of large image databases.4.3 Nearest-neighbor algorithmWe have just described a good set of features, namely, the 2M + 1 entries of the cumulative patternspectrum (� size distribution) of an image, as well as proved that the resulting �1() distance lower-bounds the actual distance. Thus, the resulting `F-index' will guarantee no false dismissals upon rangequeries.The next problem is to �nd the k-nearest neighbors of a query image, given that the images of thecollection have already been mapped into n-d points and organized in a SAM. Algorithms to �nd thek-nearest neighbors of a given point already exist, using a branch-and-bound algorithm [22], and havebeen applied to R-trees recently [57].However, the SAM search will return the k-nearest neighbors with respect to the max-granulometricdistance �1(), as opposed to the max-morphological distance d1() that we really want.Here we describe the algorithm that �nds the actual k-nearest neighbors in any F-index where theLower-Bounding Lemma (Lemma 1) holds: 13



Algorithm 1 (k-nn)/*uses an F-index to return the k-nearest neighbors according to the actual distance*//*input: query object Q; # of nn k*//*output: k-nearest objects X1, X2, ..., Xk*/1. Search the SAM to find the k-nn wrt the feature distance Dfeature (�1 in our case).2. Compute the actual distance Dobject(Q;X) (d1(Q;X) in our case) for all the kcandidates X, and return the maximum �max.3. Issue a range query with the feature vector F (Q) of the query object Q and �maxon the SAM, retrieve all the actual objects, compute their actual distancesDobject() from Q, and pick the nearest k.We prove that the above algorithm will give no false dismissals:Lemma 4 Algorithm 1 guarantees no false dismissals for k-nn queries.Proof: Let Xk be the shape returned as the k-th nearest neighbor by the algorithm (step 3); let Y bea object that is the j-th nearest neighbor (with j < k). ThenDobject(Q; Y ) � Dobject(Q;Xk) (18)Suppose for a moment that the algorithm fails to return Y . We will show that this leads to a contra-diction: After the range query is issued in step 3, all eliminated shapes (including Y ) must have featuredistance Dfeature greater than �max, that isDfeature(Q; Y ) > �max (19)and, from the Lower-Bounding Lemma (Lemma 1),Dobject(Q; Y ) � Dfeature(Q; Y ) > �max (20)However, �max � Dobject(Q;Xk) (21)(since Xk was obviously retrieved by step 3). Combining the last two inequalities, we obtainDfeature(Q; Y ) > Dobject(Q;Xk) (22)which contradicts Eq. 18. QED14



5 ExperimentsTo test the speed of our approach, we implemented our method and ran experiments. Next we describethe set up, as well as our results and observations, for range queries and for nearest neighbor queries.Testbed: We generated 20,000 black-and-white 128 � 128 pixel images of tumor shapes based onEden's model of tumor growth. Each image contains a tumor that either (a) grows uniformly in alleight directions, (b) is biased vertically and horizontally with slower growth along the diagonals, (c)is restricted along one direction (blocked by a barrier such as a bone), or (d) is restricted along twodirections (cone-shaped). Within each of these four classes of growth, we vary� the number of iterations, which a�ects the size of the tumor;� the directional bias (pNS=pEW ), which a�ects the ratio of height to width.We performed experiments for varying database sizes N , by choosing N images among the 20,000 ones.Competing methods:� straightforward sequential scan: This is the simple brute force algorithm. Given a query image, thealgorithm goes through all images in the database and computes its max-morphological distancefrom the query image, keeping track of the images with the minimum distance. Because thealgorithm is comparing images on a pixel-by-pixel basis, it is extremely ine�cient.� F-index with an n-d R-tree: On insertion, the size distribution, or cumulative pattern spectrumyX , of each image of the database has been computed and the n-dimensional vector has beeninserted into an R-tree. Given a query image, its cumulative pattern spectrum is computed, andis then submitted for a range or k-nearest neighbor search in the R-tree, as we discussed before.Measurements: We are interested in the response time, that is, the time until the last actual hit isreturned to the user (after the system has discarded possible false alarms). For some small settings wereport actual (wall-clock) time, from the time utility of UNIXTM. However, the time tmm to computethe max-morphological distance between two images is high (tmm = 12:69 sec on average) and showssmall variance (standard deviation of 0.036sec). Thus, to accelerate the execution of experiments onlarge databases, we time all the other steps of the algorithms involved, and simply `charge' a delay oftmm seconds for each max-morphological distance computation that we omit.Hardware and software The methods were implemented in 'C' and KornShell under UNIXTM.The experiments ran on a dedicated Sun SPARCstation 5 with 32Mb of main memory, running SunOS15



4.1.3. The disk drive was a FUJITSU M2266S-512 model `CRANEL-M2266SA' with minimum posi-tioning time of 8.3 ms and maximum positioning time of 30ms.We present experiments on range queries as well as nearest neighbor queries. We also give somepictures of the images that have been returned.5.1 Range queries
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(a) (b)Figure 6: Response time vs. response-set size a for range queries (a) with seq. scanning (b) withoutseq. scanningWe asked 20 queries on a database of N = 1; 000 images for both methods. Figure 6(a) plots theresponse time for the F-index as a function of the response-set size a (i.e., number of actual hits, afterthe false-hits have been eliminated), for several values of the tolerance. It also shows the responsetime for sequential scanning for comparison, which is estimated to take 12697.6 seconds. Figure 6(b)shows only the proposed F-index method, in more detail. Figure 7 displays this data in a table. Theperformance gap between the two methods is very large: our method achieves 15-fold to 27-fold savings.5.2 Nearest Neighbor QueriesWe ran queries with k=2,3,4, and 10 for several N . Figure 8 shows (a) the results of k-nearest neighborqueries with k = 10, for varying N , for the F-index method compared to the sequential scan algorithm,and (b) the results of k=2,3,4, and 10 for the F-index method only. Each data point represents theaverage response time (in seconds) for 100 random query images taken from the database.Figure 9(a) shows response time vs. k (= 2,3,4,10) forN = 10; 000 and N = 20; 000 for both methods.Figure 9(b) shows response time vs. k for N = 10; 000 and N = 20; 000 for the proposed method only.16



response-set size seq scan (1) F-index (2) ratioa time (sec) time(sec) (1) : (2)2 12697.6 720.25 17.634 12697.6 660.83 19.217 12697.6 499.15 25.449 12697.6 613.03 20.7112 12697.6 564.96 22.4814 12697.6 705.85 17.9915 12697.6 520.10 24.4117 12697.6 528.76 24.0117 12697.6 621.38 20.4317 12697.6 688.00 18.46
response-set size seq scan F-index ratioa time (sec) time(sec) (1) : (2)20 12697.6 718.83 17.6621 12697.6 803.25 15.8124 12697.6 605.33 20.9824 12697.6 636.68 19.9425 12697.6 620.13 20.4831 12697.6 720.00 17.6446 12697.6 474.45 26.7646 12697.6 718.65 17.6748 12697.6 576.88 22.0150 12697.6 719.95 17.64Figure 7: Table of (a) response-set size a (b) response time for seq. scan (c) response time for F-index(d) ratio of seq. scan time to F-index algorithm timeAgain, each data point represents the average response time over 100 queries.The observations are the following:� Our proposed algorithm is 3-7 times faster than sequential scanning, even for a large value of k(e.g., 10) for the nearest neighbors;� The savings of the proposed method compared to sequential scan seems to increase with thedatabase size N ;� Response time grows slowly with k.5.3 Sample outputHere we illustrate that the max-morphological distance function d1() seems to capture the perceptualdistance between two shapes. Figure 10 shows a few query images (left column) and their corresponding3-nearest neighbors according to the max-morphological distance. Since the query images were drawnfrom the database, the �rst nearest neighbor is identical to the query shape (which is a sanity check forour algorithms and implementations). Notice how similar the other 2 nearest neighbors are, for bothquery shapes.Finally, Figure 11 illustrates the realism of Eden's model. Figure 11(a) shows the whole mamogram,highlighting the tumor shape; (b) shows the tumor magni�ed; (c) shows the tumor shape after it hasbeen thresholded (and thus becomes a black-and-white image); and (d) shows the nearest neighbor thatwas retrieved from our testbed of 20,000 synthetic tumor shapes. The similarity of the real tumor withits synthetic nearest neighbor is striking. 17
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(a) (b)Figure 8: (a) Response time vs. db size(N), for k = 10 nn queries for both seq. scan and F-index(b) Response time vs. N for k=2,3,4,and 10.6 DiscussionAs mentioned in the introduction, we focus on whole-matching queries for 2-d shapes. In this section wediscuss how to use the proposed algorithms as a stepping stone to more complicated problems, specif-ically (a) sub-pattern matching (b) time-evolution pattern matching and (c) matching on additionaldata (demographic, etc.)1. Sub-pattern matching: The problem is to detect a similar s� s shape within a collection of S �Sbitmaps (s � S). The idea is to use sliding, overlapping windows, as we suggested in [19] fortime sequences. That is, we assume that the smallest query will be at least of size smin � sminand we pre-process each S � S data image by considering all the possible smin � smin windowsin it; then we extract n features from each window, mapping each window into a point in n-dspace. Thus, the problem is reduced to the whole-matching problem, which we have just solved.Algorithms to minimize the space requirements of the feature vectors, as well as to handle queriesof arbitrary sizes, have been suggested in [19] for 1-d time sequences; all these techniques can beeasily extended to 2-d images (and, in fact, arrays of arbitrary dimensionality).2. Time-evolution: Currently, we considered static, 2-d images. By introducing time, we have se-quences of images, which can be viewed as 3-d arrays, if we envision time as one more dimension.We could extend our 2-d algorithms to handle such 3-d shapes: The morphological concepts thatwe mentioned before (opening, closing, pattern spectrum) can be trivially extended to 3-d shapes.Therefore, our 2-d algorithms can be trivially extended to accommodate temporal patterns.18



db size seq scan F-index ratioN time (sec) time(sec) (1) : (2)200 2539.52 675.74 3.76400 5079.04 1084.19 4.68800 10158.08 2422.04 4.191000 12697.60 2375.44 5.352000 25395.20 4814.59 5.274000 50790.40 8855.21 5.748000 101580.80 14743.66 6.8910000 126976.00 20002.95 6.3512000 152371.20 33973.27 4.4920000 253952.00 39340.32 6.46Table 2: Values for 10-nn queries: (a) db size N (b) response time for seq. scan (c) response time forthe proposed algorithm (d) ratio of seq. scan time to proposed algorithm time3. Inclusion of non-spatial data: The diagnosis for a tumor-like shape has to take into account notonly the shape, but also additional information: e.g., whether/how close is it to an organ (lung,liver, etc.), demographic characteristics of the patient (age, gender, etc.) Our algorithm can easilyincorporate such data by augmenting the n-dimensional feature vectors with a few more numericalfeatures (age of patient, distance of tumor from liver, etc). Thus, our feature space will have nspatial features (the size-distribution coe�cients of the tumor shape) plus n0 non-spatial features;the rest of our algorithms will remain intact.7 ConclusionsWe have focused on fast searching for similar shapes with emphasis on tumor-like shapes. To solvethe problem, we used a multi-scale distance function, the so-called `max-morphological' distance. Thisdistance function is based on modern signal processing methods, and speci�cally mathematical mor-phology. The distance is invariant to rotations and translations, and gives similar attention to all levelsof detail (`scales'). From the database end, we used the `Feature index' (F-index) approach [1, 19],which is the latest in multimedia indexing.The main contribution of this work is that it manages to couple the max-morphological distance withthe F-index. This is done by using the coe�cients of the size distribution as features, and by showing thatthe L1 (=max) distance in the resulting feature space lower-bounds the max-morphological distance.Given the Lower-Bounding Lemma (Lemma 1), this guarantees no false dismissals for range queries.Additional contributions are the following: 19
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(a) (b)Figure 9: Response time vs. k for N = 10; 000 and N = 20; 000 (a) with seq. scanning (b) without seq.scanning� The design and implementation of a nearest neighbor algorithm on an F-index, which provablyguarantees no false dismissals� The implementation of the proposed method and the experimentation on a synthetic, but realistic,database of tumor-like shapes. There, the proposed method achieved dramatic speed-ups (up to27-fold) over the straightforward sequential scanning.� A survey of the literature on tumor-growth modeling. Given the administrative and patient-privacy problems in obtaining large collections of real X-rays, we believe that the above citationsand algorithms will provide an excellent starting point for database researchers who want to workin this area and need a realistic testbed for their algorithms.� The introduction of the basic morphological concepts (dilation, erosion, pattern spectrum, etc.) inan intuitive way, so that these powerful tools will become more accessible to database researchers.Future research should focus on applications and extensions of the proposed method for severalmodalities including Computed Radiography, CT, MRI, Ultrasound, and Nuclear Medicine, as well asnon-radiologic images in areas such as dermatology and pathology. The algorithm could be incorporatedfor general use in a large-scale PACS and serve as a powerful tool for both diagnostic and researchpurposes.References[1] Rakesh Agrawal, Christos Faloutsos, and Arun Swami. E�cient similarity search in se-20
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