Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Interaction of Lasers with Atomic Clusters and Structured Plasmas

    Thumbnail
    View/Open
    umi-umd-4912.pdf (1.396Mb)
    No. of downloads: 1107

    scat.mpg (1.835Mb)
    No. of downloads: 170

    Date
    2007-11-09
    Author
    Palastro, John Patrick
    Advisor
    Antonsen, Thomas M
    Metadata
    Show full item record
    Abstract
    We examine the interaction of intense, short laser pulses with atomic clusters and structured plasmas, namely preformed plasma channels. In examining the laser pulse interaction with atomic clusters we focus on the optical response of an individual cluster when irradiated by a laser. Our analysis of the laser pulse interaction with plasma channels focuses on the mode structure of a laser pulse propagating within the channel. We then present a novel application of these channels: quasi-phased match acceleration of electrons. The optical properties of a gas of laser pulse exploded clusters are determined by the time-evolving polarizabilities of individual clusters. In turn, the polarizability of an individual cluster is determined by the time evolution of individual electrons within the cluster's electrostatic potential. We calculate the linear cluster polarizability using the Vlasov equation. A quasi-static equilibrium is calculated from a bi-maxwellian distribution that models both the hot and cold electrons, using inputs from a particle-in-cell simulation [Taguchi, T. et al., Phys. Rev. Lett., 2004. 92(20)]. We then perturb the system to first order in field and integrate the response of individual electrons to the self consistent field following unperturbed orbits. The dipole spectrum depicts strong absorption at frequencies much smaller than omega_p/√2. This enhanced absorption results from a beating of the laser field with electron orbital motion. The properties of pulse propagation within plasma are determined by the structure of the plasma. The preformed plasma channel provides a guiding structure for laser pulses unbound by the intensity thresholds of standard wave guides. In particular, the corrugated plasma channel [Layer et al. Phys. Rev. Lett. (2007)] allows for the guiding of subluminal spatial harmonics. These spatial harmonics can be phase matched to high energy electrons, making the corrugated plasma channel ideal for the acceleration of electrons. We present a simple analytic model of pulse propagation in a corrugated plasma channel and examine the laser-electron beam interaction. Simulations show accelerating gradients of several hundred MeV/cm for laser powers much lower than required by standard laser wakefield schemes.
    URI
    http://hdl.handle.net/1903/7639
    Collections
    • Physics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility